N-type and P/Q-type Ca(2+) channels support glutamate release at central synapses. To determine whether the glutamate release mediated by these channels exhibits distinct properties, we have isolated each release component in cerebrocortical nerve terminals from wild-type mice by specifically blocking N-type Ca(2+) channels with omega-conotoxin-GVIA and P/Q-type Ca(2+) channels with omega-agatoxin-IVA. In addition, we have determined the release properties at terminals from mice lacking the alpha(1B) subunit of N-type channels (Ca(v) 2.2) to test the possibility that P/Q-type channels can compensate for the loss of N-type Ca(2+) channels. We recently demonstrated that, while evoked glutamate release depends on P/Q- and N-type channels in wild-type nerve terminals, only P/Q-type channels participate in these knockout mice. Moreover, in nerve terminals expressing solely P/Q-type channels, metabotropic glutamate receptor 7 (mGluR7) fails to inhibit the evoked Ca(2+) influx and glutamate release. Here, we show that the failure of mGluR7 to modulate evoked glutamate release is not due to a lack of receptors, as nerve terminals from mice lacking N-type Ca(2+) channels express mGluR7. Indeed, we show that other receptor responses, such as the inhibition of forskolin-induced release, are preserved in these knockout mice. N-type channels are more loosely coupled to release than P/Q-type channels in nerve terminals from wild-type mice, as reflected by the tighter coupling of release in knockout nerve terminals. We conclude that the glutamate release supported by N- and P/Q-type channels exhibits distinct properties, and that P/Q-type channels cannot fully compensate for the loss of N-type channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1460-9568.2009.06675.x | DOI Listing |
PLoS Genet
January 2025
Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.
Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.
View Article and Find Full Text PDFCureus
January 2025
Research, Clarity Science LLC, Narragansett, USA.
The recent identification of Piezo ion channels demonstrating a mechano-sensitive impact on neurons revealed distinct Piezo-1 and 2 types. While Piezo-1 predominates in neurons linked to non-sensory stimulation, such as pressure in blood vessels, Piezo-2 predominates in neurons linked to sensory stimulation, such as touch. Piezo-1 and 2 have a major bidirectional impact on transient receptor potential (TRP) ion channels, and TRPs also impact neurotransmitter release.
View Article and Find Full Text PDFNeurol Res Int
January 2025
Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico.
Alpha-synuclein (ASyn), a marker of Parkinson's disease (PD) and other neurodegenerative processes, plays pivotal roles in neuronal nuclei and synapses. ASyn and its phosphorylated form at Serine 129 (p-ASyn) are involved in DNA protection and repair, processes altered in aging, neurodegeneration, and cancer. To analyze the localization of p-ASyn in skin biopsies of PD patients and melanoma.
View Article and Find Full Text PDFNeurobiol Pain
December 2024
Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Painful diabetic neuropathy (PDN) is a challenging complication of diabetes with patients experiencing a painful and burning sensation in their extremities. Existing treatments provide limited relief without addressing the underlying mechanisms of the disease. PDN involves the gradual degeneration of nerve fibers in the skin.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Pharmacology, University of Oxford, Oxford, UK.
Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!