AI Article Synopsis

  • The study investigates the collision rates and energy transfer between HOD molecules and highly vibrationally excited 2-methylpyridine and 2,6-dimethylpyridine at specific energy levels.
  • High-resolution transient IR absorption measurements provide insights into the product state distributions of scattered HOD molecules, revealing similar energy distributions for both aromatic donors.
  • The energy transfer rates for HOD colliding with picoline and lutidine are found to be significantly higher than the expected Lennard-Jones collision rates, with substantial implications for hydrogen bonding interactions.

Article Abstract

Collision rates and energy transfer distributions are reported for HOD with highly vibrationally excited 2-methylpyridine (2-picoline, E = 38 310 cm(-1)) and 2,6-dimethylpyridine (2,6-lutidine, E = 38 700 cm(-1)). High resolution transient IR absorption is used measured to complete product state distributions of scattered HOD(000) molecules with E(rot) = 109 to 1331 cm(-1). Doppler-broadened line profiles characterize the depletion and appearance for HOD molecules due to collisions with hot donors and show that the product translational and rotational energy distributions are similar for both donors with DeltaE(rel) = 370 cm(-1) and DeltaE(rot) approximately 75 cm(-1). The energy transfer rate for picoline (E)/HOD is 2.5 times larger than the Lennard-Jones collision rate. The energy transfer rate for lutidine(E)/HOD is 3.2 times larger than the Lennard-Jones collision rate. Previous work ( Havey, Liu, Li, Elioff, and Mullin, J. Phys. Chem. A 2007, 111, 13321-9 ) reported similar energy transfer values for pyrazine/HOD collisions and an energy transfer rate that is 1.7 times the Lennard-Jones collision rate. The observed collision rates are discussed in terms of hydrogen bonding interactions between HOD and the aromatic donor molecules. Energy gain profiles for HOD are compared with those for H(2)O.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp811077pDOI Listing

Publication Analysis

Top Keywords

energy transfer
20
lennard-jones collision
16
collision rates
12
transfer rate
12
collision rate
12
molecules collisions
8
times larger
8
larger lennard-jones
8
energy
7
collision
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!