In yeast and mammals, ATP-dependent chromatin remodelling complexes of the SWI/SNF family play critical roles in the regulation of transcription, cell proliferation, differentiation and development. Homologues of conserved subunits of SWI/SNF-type complexes, including Snf2-type ATPases and SWI3-type proteins, participate in analogous processes in Arabidopsis. Recent studies indicate a remarkable similarity between phenotypic effects of mutations in the SWI3 homologue ATSWI3C and bromodomain-ATPase BRM genes. To verify the extent of functional similarity between BRM and ATSWI3C, we have constructed atswi3c brm double mutants and compared their phenotypic traits to those of simultaneously grown single atswi3c and brm mutants. In addition to inheritance of characteristic developmental abnormalities shared by atswi3c and brm mutants, some additive brm-specific traits were also observed in the atswi3c brm double mutants. Unlike atswi3c, the brm mutation results in the enhancement of abnormal carpel development and pollen abortion leading to complete male sterility. Despite the overall similarity of brm and atswi3c phenotypes, a critical requirement for BRM in the differentiation of reproductive organs suggests that its regulatory functions do not entirely overlap those of ATSWI3C. The detection of two different transcript isoforms indicates that BRM is regulated by alternative splicing that creates an in-frame premature translation stop codon in its SNF2-like ATPase coding domain. The analysis of Arabidopsis mutants in nonsense-mediated decay suggests an involvement of this pathway in the control of alternative BRM transcript level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-009-0915-5 | DOI Listing |
Cell Cycle
September 2021
Department of Botany, UGC Centre for Advanced Studies, the University of Burdwan, Golapbag Campus, Burdwan, West Bengal, India.
Plants, with their obligatory immobility, are vastly exposed to a wide range of environmental agents and also various endogenous processes, which frequently cause damage to DNA and impose genotoxic stress. These factors subsequently increase genome instability, thus affecting plant growth and productivity. Therefore, to survive under frequent and extreme environmental stress conditions, plants have developed highly efficient and powerful defense mechanisms to repair the damages in the genome for maintaining genome stability.
View Article and Find Full Text PDFPlanta
May 2009
Laboratory of Plant Molecular Biology, University of Warsaw, Pawinskiego 5A, 02-106, Warsaw, Poland.
In yeast and mammals, ATP-dependent chromatin remodelling complexes of the SWI/SNF family play critical roles in the regulation of transcription, cell proliferation, differentiation and development. Homologues of conserved subunits of SWI/SNF-type complexes, including Snf2-type ATPases and SWI3-type proteins, participate in analogous processes in Arabidopsis. Recent studies indicate a remarkable similarity between phenotypic effects of mutations in the SWI3 homologue ATSWI3C and bromodomain-ATPase BRM genes.
View Article and Find Full Text PDFPlant Physiol
July 2008
Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario, Canada N5V 4T3.
Synthesis and accumulation of seed storage proteins (SSPs) is an important aspect of the seed maturation program. Genes encoding SSPs are specifically and highly expressed in the seed during maturation. However, the mechanisms that repress the expression of these genes in leaf tissue are not well understood.
View Article and Find Full Text PDFPlant Mol Biol
September 2006
Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Av. Américo Vespucio 49, E-41092 Sevilla, Spain.
Arabidopsis thaliana BRAHMA (BRM, also called AtBRM) is a SNF2 family protein homolog of Brahma, the ATPase of the Drosophila SWI/SNF complex involved in chromatin remodeling during transcription. Here we show that, in contrast to its Drosophila counterpart, BRM is not an essential gene. Thus, homozygous BRM loss of function mutants are viable but exhibit numerous defects including dwarfism, altered leaf and root development and several reproduction defects.
View Article and Find Full Text PDFDevelopment
October 2004
Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Américo Vespucio s/n, E-41092 Sevilla, Spain.
Chromatin remodeling is essential for the reprogramming of transcription associated with development and cell differentiation. The SWI/SNF complex was the first chromatin remodeling complex characterized in yeast and Drosophila. In this work we have characterized an Arabidopsis thaliana homolog of Brahma, the ATPase of the Drosophila SWI/SNF complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!