Density functional theory (DFT), using the hybrid functionals B3LYP and B2PLYP, has been employed to investigate the activation of the acrolein-butadiene Diels-Alder reaction, mediated by a thiourea catalyst. Effects due to electron-donating groups (EDGs) on the diene, as well as electron-withdrawing groups (EWGs) on the dienophile, have also been studied. Organic catalysts such as thioureas are known to lower the activation energy through hydrogen-bonding to the carbonyl oxygen, in a way that mimics the oxyanion holes of hydrolytic enzymes. EDGs and EWGs were found to further activate the reaction, and the catalyst showed a synergistic behavior towards the EDGs. Polar solvents were found to reduce the overall activation energy, but also the relative catalytic effect of the thiourea, in accordance with experimental studies. The substituent-mediated reactions displayed more asynchronous transition structures with lower activation energy, which led us to investigate the possibility of an alternative two-step, Michael-type route, similar to what has been found in macrophomate synthase. Although the concerted Diels-Alder route was found to be favored over the Michael route, the calculated activation energy difference is less than 1 kcal mol(-1), which suggests that the two mechanisms compete, and could be responsible for the particular stereochemical outcome of an experiment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b818655c | DOI Listing |
J Hematol Oncol
January 2025
Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China.
Analog In-memory Computing (IMC) has demonstrated energy-efficient and low latency implementation of convolution and fully-connected layers in deep neural networks (DNN) by using physics for computing in parallel resistive memory arrays. However, recurrent neural networks (RNN) that are widely used for speech-recognition and natural language processing have tasted limited success with this approach. This can be attributed to the significant time and energy penalties incurred in implementing nonlinear activation functions that are abundant in such models.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive memory loss and cognitive decline. The processes underlying the pathophysiology of AD are still not fully understood despite a great deal of research. Since mitochondrial dysfunction affects cellular energy metabolism, oxidative stress, and neuronal survival, it is becoming increasingly clear that it plays a major role in the development of AD.
View Article and Find Full Text PDFSci Rep
January 2025
Nano-fabricated Energy Devices Lab, School of Electrical and Computer Eng., University of Tehran, 14395-515, Tehran, Iran.
Core-shell silicon/multiwall carbon nanotubes are one of the most promising anode candidates for further improvement of lithium-ion batteries. Sufficient accommodation for massive volume expansion of silicon during the lithiation process and preventing pulverization and delamination with easy fabrication processes are still critical issues for practical applications. In this study, core-shell silicon/MWCNTs anode materials were synthesized using a facile and controllable PECVD technique to realize aligned MWCNTs followed by a silicon sputtering step.
View Article and Find Full Text PDFCommun Biol
January 2025
School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK.
Reduced cerebral blood flow occurs early in the development of Alzheimer's disease (AD), but the factors producing this reduction are unknown. Here, we ask whether genetic and lifestyle risk factors for AD-the ε4 allele of the Apolipoprotein (APOE) gene, and physical activity-can together produce this reduction in cerebral blood flow which leads eventually to AD. Using in vivo two-photon microscopy and haemodynamic measures, we record neurovascular function from the visual cortex of physically active or sedentary mice expressing APOE3 and APOE4 in place of murine APOE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!