Plasmodium falciparum infection results in adhesion of infected erythrocytes to blood vessel endothelium, and acute endothelial cell activation, together with sequestration of platelets and leucocytes. We have previously shown that patients with severe infection or fulminant cerebral malaria have significantly increased circulatory levels of the adhesive glycoprotein von Willebrand factor (VWF) and its propeptide, both of which are indices of endothelial cell activation. In this prospective study of patients from Ghana with severe (n = 20) and cerebral (n = 13) P. falciparum malaria, we demonstrate that increased plasma VWF antigen (VWF:Ag) level is associated with disproportionately increased VWF function. VWF collagen binding (VWF:CB) was significantly increased in patients with cerebral malaria and severe malaria (medians 7.6 and 7.0 IU/ml versus 1.9 IU/ml; p<0.005). This increased VWF:CB correlated with the presence of abnormal ultra-large VWF multimers in patient rather than control plasmas. Concomitant with the increase in VWF:Ag and VWF:CB was a significant persistent reduction in the activity of the VWF-specific cleaving protease ADAMTS13 (approximately 55% of normal; p<0.005). Mixing studies were performed using P. falciparum patient plasma and normal pooled plasma, in the presence or absence of exogenous recombinant ADAMTS13. These studies demonstrated that in malarial plasma, ADAMTS13 function was persistently inhibited in a time-dependent manner. Furthermore, this inhibitory effect was not associated with the presence of known inhibitors of ADAMTS13 enzymatic function (interleukin-6, free haemoglobin, factor VIII or thrombospondin-1). These novel findings suggest that severe P. falciparum infection is associated with acute endothelial cell activation, abnormal circulating ULVWF multimers, and a significant reduction in plasma ADAMTS13 function which is mediated at least in part by an unidentified inhibitor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652105 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1000349 | DOI Listing |
Front Cell Infect Microbiol
January 2025
National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.
Introduction: A continuing challenge for malaria control is the ability of to develop resistance to antimalarial drugs. Members within the transcription factor family AP2 regulate the growth and development of the parasite, and are also thought to be involved in unclear aspects of drug resistance. Here we screened for single nucleotide polymorphisms (SNPs) within the AP2 family and identified 6 non-synonymous mutations within AP2-06B (PF3D7_0613800), with allele frequencies greater than 0.
View Article and Find Full Text PDFBMC Public Health
January 2025
Medical Microbiology Department, Faculty of Medical Sciences, Ibb University, Ibb, Yemen.
Background: Malaria is one of the important diseases that threatens the global health system, especially in developing countries, including Yemen. Based on surveillance data, this analysis aimed to assess the trend of malaria in Yemen over the last sixteen years from 2006 to 2021.
Methods: A retrospective analysis was conducted on secondary malaria data from the database from the Ministry of Public Health and Population in Yemen.
Sci Rep
January 2025
Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.
There are three Anopheles mosquito species in East Africa that are responsible for the majority of malaria transmission, posing a significant public health concern. Understanding the vector competence of different mosquito species is crucial for targeted and cost-effective malaria control strategies. This study investigated the vector competence of laboratory reared strains of East African An.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
School of Public Health, National Defense Medical Center, Taipei City, Taiwan.
Although the World Health Organization (WHO) certified Taiwan as being malaria-free in 1965, there are reports of a few imported cases each year by travelers who visit malaria-endemic areas. This study examined the epidemiology of imported malaria cases in Taiwan from 2014 to 2020, utilizing national surveillance data from the Taiwan Centers for Disease Control. Malaria cases were confirmed through the application of standard laboratory methods.
View Article and Find Full Text PDFExp Biol Med (Maywood)
January 2025
West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana.
Malaria causes significant morbidity and mortality worldwide, disproportionately impacting sub-Saharan Africa. Disease phenotypes associated with infection can vary widely, from asymptomatic to life-threatening. To date, prevention efforts, particularly those related to vaccine development, have been hindered by an incomplete understanding of which factors impact host immune responses resulting in these divergent outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!