Exploring a pocket for polycycloaliphatic groups in the CXCR3 receptor with the aid of a modular synthetic strategy.

Bioorg Med Chem Lett

Division of Medicinal Chemistry, Faculty of Sciences, Leiden/Amsterdam Center for Drug Research, VU University Amsterdam, Amsterdam, The Netherlands.

Published: April 2009

AI Article Synopsis

  • A synthetic approach was used to investigate a CXCR3 pocket that can fit polycycloaliphatics.
  • The research findings indicate that the tricyclic 2-adamantane and bicyclic (iso)bornyl structures are effectively recognized by the CXCR3 receptor.
  • This study enhances understanding of how specific molecular shapes interact with CXCR3, which could have implications in drug development.

Article Abstract

A CXCR3 pocket capable of accommodating polycycloaliphatics was explored using a modular synthetic strategy. The systematic studies reveal that the tricyclic 2-adamantane and bicyclic (iso)bornyl group are efficiently recognized by CXCR3.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2009.02.093DOI Listing

Publication Analysis

Top Keywords

modular synthetic
8
synthetic strategy
8
exploring pocket
4
pocket polycycloaliphatic
4
polycycloaliphatic groups
4
groups cxcr3
4
cxcr3 receptor
4
receptor aid
4
aid modular
4
strategy cxcr3
4

Similar Publications

Due to the diverse chemical and physical properties of functional groups, mild and controllable ligation methods are often required to construct complex drugs and functional materials. To make diverse sets of products with tunable physicochemical properties, it is also useful to employ complimentary ligation methods that adopt the same starting materials. Here, we disclose the efficient and modular synthesis of amides or thioamides through the chemical ligation of acyl silanes with amines, simply by turning a light on or off.

View Article and Find Full Text PDF

A synergistic photoredox/cobalt/chromium triple catalysis system for regioselective, enantioselective, and diastereoselective 1,4-hydrocarbonation of readily available 1,3-enyne precursors was explored, providing a modular synthetic platform for various trisubstituted axially chiral allenes bearing an extra central chirality. The protocol features a broad substrate scope, good functional group tolerance, excellent selectivity, and mild reaction conditions. Furthermore, a possible reaction mechanism is proposed based on numerous control experiments and density functional theory calculations.

View Article and Find Full Text PDF

Phosphorus-containing fluorophores provide a versatile framework for tailoring photophysical properties, enabling the design of advanced fluorogenic materials for various applications. Boron dipyrromethene (BODIPY) and squaraine dyes are of interest due to their multifaceted modularity and synthetic accessibility. Incorporating phosphorus-based functional groups into BODIPY or squaraine scaffolds has been achieved through a plethora of synthetic methods, including post-dye assembly functionalization.

View Article and Find Full Text PDF

Understanding the relation between cortical neuronal network structure and neuronal activity is a fundamental unresolved question in neuroscience, with implications to our understanding of the mechanism by which neuronal networks evolve over time, spontaneously or under stimulation. It requires a method for inferring the structure and composition of a network from neuronal activities. Tracking the evolution of networks and their changing functionality will provide invaluable insight into the occurrence of plasticity and the underlying learning process.

View Article and Find Full Text PDF

De novo biosynthesis of mogroside V by multiplexed engineered yeasts.

Metab Eng

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China. Electronic address:

High sugar intake has become a global health concern due to its association with various diseases. Mogroside V (MG-V), a zero-calorie sweetener with multiple medical properties, is emerging as a promising sugar substitute. However, its application is hindered by low natural abundance and the inefficiency of conventional plant extraction methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!