Volume reductions of the insular cortex have been described in schizophrenia, but it remains unclear whether other psychotic disorders such as affective psychosis also exhibit insular cortex abnormalities. In this study, we used magnetic resonance imaging to investigate the gray matter volume of the anterior (short) and posterior (long) insular cortices in 162 first-episode patients with various psychotic disorders (46 schizophrenia, 57 schizophreniform disorder, 34 affective psychosis, and 25 other psychoses) and 62 age- and gender-matched healthy comparison subjects. Patients with schizophrenia showed bilateral volume reduction of the anterior and posterior insular cortices compared with controls, but the remaining first-episode psychosis subgroups had normal insular volumes. The volumes of these insular subregions were significantly smaller in schizophrenia patients than in patients with schizophreniform disorder or affective psychoses. There was no association between the insular cortex volume and daily dosage or type of antipsychotic medication in any patient group. These findings suggest that the widespread volume reduction of the insular cortex is specific to established schizophrenia, implicating its role in the neurobiology of clinical characteristics associated with schizophrenia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pnpbp.2009.03.005DOI Listing

Publication Analysis

Top Keywords

insular cortex
20
psychotic disorders
12
insular
9
cortex abnormalities
8
affective psychosis
8
insular cortices
8
schizophreniform disorder
8
disorder affective
8
volume reduction
8
schizophrenia
6

Similar Publications

The insular cortex (IC) processes various sensory information, including nociception, from the trigeminal region. Repetitive nociceptive inputs from the orofacial area induce plastic changes in the IC. Parvalbumin-immunopositive neurons (PVNs) project to excitatory neurons (pyramidal neurons [PNs]), whose inputs strongly suppress the activities of PNs.

View Article and Find Full Text PDF

Traditional decision-making models conceptualize humans as adaptive learners utilizing the differences between expected and actual rewards (prediction errors, PEs) to maximize outcomes, but rarely consider the influence of violations of emotional expectations (emotional PEs) and how it differs from reward PEs. Here, we conducted a fMRI experiment (n = 43) using a modified Ultimatum Game to examine how reward and emotional PEs affect punishment decisions in terms of rejecting unfair offers. Our results revealed that reward relative to emotional PEs exerted a stronger prediction to punishment decisions.

View Article and Find Full Text PDF

Morphine dependence or addiction is a serious global public health and social problem, and traditional treatments are very limited. Deep brain stimulation (DBS) has emerged as a new potential treatment for drug addiction. Repeated use of morphine leads to neuroadaptive and molecular changes in the addiction-related brain regions.

View Article and Find Full Text PDF

Neuropathic pain, caused by nerve damage, greatly affects quality of life. Recent research proposes modulating brain activity, particularly through electrical stimulation of the insular cortex (IC), as a treatment option. This study aimed to understand how IC stimulation (ICS) affects pain modulation.

View Article and Find Full Text PDF

Objective: Epilepsy is considered as a network disorder of interacting brain regions. The propagation of local epileptic activity from the seizure onset zone (SOZ) along neuronal networks determines the semiology of seizures. However, in highly interconnected brain regions such as the insula, the association between the SOZ and semiology is blurred necessitating invasive stereoelectroencephalography (SEEG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!