Introduction: Intra-operative cerebral ischemia can be catastrophic, and volatile anesthetic agents have been recognized for their potential neuroprotective properties since the 1960s. In this review, we examine the neuroprotective effects of five volatile anesthetic agents in current or recent clinical use: isoflurane, sevoflurane, desflurane, halothane and enflurane.
Methods: A review of publications in the National Library of Medicine and National Institutes of Health database from 1970 to 2007 was conducted.
Results: Volatile anesthetic agents have been shown to be neuroprotective in multiple animal works of ischemic brain injury. Short-term neuroprotection (<1 week post-ischemia) in experimental cerebral ischemia has been reported in multiple works, although long-term neuroprotection (> or = 1 week post-ischemia) remains controversial. Comparison works have not demonstrated superiority of one specific volatile agent over another in experimental models of brain injury. Relatively few human works have examined the protective effects of volatile anesthetic agents and conclusive evidence of a neuroprotective effect has yet to emerge from human works.
Conclusion: Proposed mechanisms related to the neuroprotective effect of volatile anesthetic agents include activation of ATP-dependent potassium channels, up-regulation of nitric oxide synthase, reduction of excitotoxic stressors and cerebral metabolic rate, augmentation of peri-ischemic cerebral blood flow and up-regulation of antiapoptotic factors including MAP kinases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1179/174313209X393546 | DOI Listing |
BJA Open
March 2025
Department of Anaesthesia, The William Harvey Hospital, Ashford, UK.
Background: Increasing awareness of the potential environmental impact of volatile anaesthetic agents has stimulated increased use of total i.v. anaesthesia.
View Article and Find Full Text PDFAnesthesiology
February 2025
Beth Israel Deaconess Medical Center, Boston, Massachusetts (B.O.).
Anesthesiology
February 2025
The North American Malignant Hyperthermia Registry of the Malignant Hyperthermia Association of the United States, Sherburne, New York (M.G.L.).
J Neurosurg Anesthesiol
November 2024
Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA.
This systematic review aimed to identify and describe best practice for the intraoperative anesthetic management of patients undergoing emergent/urgent decompressive craniotomy or craniectomy for any indication. The PubMed, Scopus, EMBASE, and Cochrane databases were searched for articles related to urgent/emergent craniotomy/craniectomy for intracranial hypertension or brain herniation. Only articles focusing on intraoperative anesthetic management were included; those investigating surgical or intensive care unit management were excluded.
View Article and Find Full Text PDFTalanta
January 2025
Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044, China; School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing, 400044, China. Electronic address:
The effective qualitative and quantitative detection of mixed components of volatile organic compounds (VOCs) with similar molecular structures has always been a challenge and hotpoint in the research. A novel quartz-crystal microbalance (QCM) nanocomposite sensor integrated with a surface-enhanced Raman scattering (SERS) detection platform for multi-component gas analysis was proposed and fabricated in this paper. MIL-100 (Fe)/PAN composite fibers were developed on QCM via electrospinning of polyacrylonitrile (PAN) and hydrothermal synthesis, addressing the integration issues of MIL-100 particles in devices while maintaining high specific surface area.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!