In naturally fertilized embryos of various organisms, the spermatozoon provides a localized cue to initiate early embryonic patterning. In mice, the sperm entry point (SEP) may reorient the first cleavage division, which separates the zygote into two halves that follow distinct fates. However, it is unknown whether the mechanical injection of spermatozoa into an oocyte by intracytoplasmic sperm injection (ICSI), a technique commonly used in human assisted reproduction, possesses such a role. Rhesus macaque embryos fertilized by ICSI were examined in order to determine the consequences of placing the spermatozoon at specific positions in the ooplasm and whether this can provide new information about patterning in mammalian eggs. The SEP specified by the injected spermatozoa was most often localized near the first cleavage plane and was mainly distributed along the boundary zone that separates the embryonic and abembryonic parts of the monkey blastocyst. Moreover, the ICSI data, when compared with naturally fertilized mouse embryos, showed a similar outcome in terms of cleavage axes and first embryonic axis specification. As there are no studies to date regarding sperm entry in human oocytes and its influence on embryonic development, this investigation using the rhesus macaque as a clinical model is noteworthy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4400661 | PMC |
http://dx.doi.org/10.1016/s1472-6483(10)60097-1 | DOI Listing |
Protein Sci
February 2025
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
The TGF-β family ligand Nodal is an essential regulator of embryonic development, orchestrating key processes such as germ layer specification and body axis formation through activation of SMAD2/3-mediated signaling. Significantly, this activation requires the co-receptor Cripto-1. However, despite their essential roles in embryogenesis, the molecular mechanism through which Cripto-1 enables Nodal to activate the SMAD2/3 pathway has remained elusive.
View Article and Find Full Text PDFBiochem Soc Trans
January 2025
Centre for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany.
Primary axis formation is the first step of embryonic patterning in flowering plants and recent findings highlight the importance of parent-of-origin effects in this process. Apical-basal patterning has a strong influence on suspensor development, an extra-embryonic organ involved in nutrient transport to the embryo at an early stage of seed development. The endosperm, a second fertilization product, nourishes the embryo at later stages of seed development.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Pediatric Surgery, Guizhou Children Hospital, Zunyi, Guizhou 563000, China. Electronic address:
Nonylphenol (NP), a ubiquitous environmental contaminant used as a surfactant in industrial production and classified as an endocrine disruptor, could interfere hormone secretion and exhibit neurotoxicity in organisms. Hirschsprung's disease (HSCR), one of the most frequently observed congenital malformations of the digestive system, arises mainly due to the failure of enteric neural crest cells to migrate to the distal colon during embryonic development. However, the effects of NP exposure on HSCR are largely unknown.
View Article and Find Full Text PDFThe forebrain is the most complex region of the vertebrate CNS, and its developmental organisation is controversial. We fate-mapped the embryonic chick forebrain using lipophilic dyes and Cre-recombination lineage tracing, and built a 4D model of brain growth. We reveal modular patterns of anisotropic growth, ascribed to progenitor regions through multiplex HCR.
View Article and Find Full Text PDFCell Death Dis
January 2025
Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.
Research on the aetiology of neural tube defects (NTDs) has made progress in recent years. However, the molecular mechanism of apolipoproteins underlying NTDs development remains unclear. This study aimed to investigate the function of apolipoprotein M (ApoM) in the pathogenesis of NTDs and its underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!