Stimulatory effect of N-methyltyramine, a congener of beer, on pancreatic secretion in conscious rats.

Alcohol Clin Exp Res

Research Center, Suntory Limited, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618-8503, Japan.

Published: February 2010

Background: Alcoholic beverages stimulate gastric acid secretion and increase the appetite. Although ingested ethanol stimulates pancreatic secretion, alcoholic beverages contain several congeners. N-methyltyramine (NMT) was isolated from beer as a factor in stimulating gastric acid secretion. In this study, we examined NMT to determine whether the congener stimulated pancreatic secretion in conscious rats.

Methods: Cannulae were inserted into male Wistar rats to separately drain bile and pancreatic secretions: 2 duodenal cannulae, a gastric cannula, and an external jugular vein cannula. The rats were placed in modified Bollman-type restraint cages. After a 4-day recovery period, experiments were conducted on unanesthetized rats. Different concentrations of NMT (5, 25, and 50 microg/kg) solutions were infused into the stomach. To examine the mechanism, the effects of the proton pump inhibitor, cholecystokinin (CCK-BR) antagonist (YM022), CCK-AR antagonist (CR1505), and atropine were administered prior to the NMT (25 microg/kg) infusion. The effect of intravenous infusion of NMT (7.5 microg/kg) was then determined. Moreover, dispersed acini were prepared, and the effect of different concentrations of NMT on amylase release was determined.

Results: Intragastric administration of NMT significantly increased pancreatic exocrine secretion in a dose-dependent manner. Atropine eliminated the stimulatory effect of NMT, but the infusion of the proton pump inhibitor, YM022, and CR1505 did not. Intravenous infusion of NMT did not affect pancreatic secretion, and NMT did not stimulate amylase release in vitro.

Conclusions: N-methyltyramine stimulates pancreatic secretion via the cholinergic gastro-pancreatic reflex. The NMT content in beer was 2 mg/l, so that if a person weighing 60 kg consumes a 750 ml of beer, 25 microg/kg NMT will be ingested. Therefore, the stimulatory effect of beer on pancreatic secretion was produced not only by ethanol but also by the congener, NMT.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1530-0277.2009.00893.xDOI Listing

Publication Analysis

Top Keywords

pancreatic secretion
24
nmt
13
nmt microg/kg
12
secretion
9
pancreatic
8
beer pancreatic
8
secretion conscious
8
alcoholic beverages
8
gastric acid
8
acid secretion
8

Similar Publications

Comprehensive review of animal models in diabetes research using chemical agents.

Lab Anim

January 2025

Kastamonu University, Faculty of Medicine, Department of Physiology, Kastamonu, Turkey.

Diabetes mellitus, characterized by insufficient insulin secretion and impaired insulin efficacy, disrupts carbohydrate, protein, and lipid metabolism. The global diabetic population is expected to double by 2025, from 380 million, posing a significant health challenge. Most diabetic individuals fall into the type 1 or type 2 categories, and diabetes adversely affects various organs, such as the kidneys, liver, nervous system, reproductive system, and eyes.

View Article and Find Full Text PDF

Background: Pancreatic acinar cell carcinoma (PACC) is a rare subtype of pancreatic cancer and the clinicopathological behavior of PACC is not yet fully understood. PACC rarely invades the main pancreatic duct (MPD), which causes intraductal growth. Thus, herein, we have reported a rare case of PACC that invaded the MPD and disseminated to the branches of the pancreatic duct (BDs) without exhibiting any continuity with the main tumor.

View Article and Find Full Text PDF

Pancreatic expression of CPT1A is essential for whole body glucose homeostasis by supporting glucose-stimulated insulin secretion.

J Biol Chem

January 2025

Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. Electronic address:

Pancreatic islet β-cells express the Cpt1a gene, which encodes the enzyme carnitine palmitoyltransferase 1A (CPT1A), an enzyme that facilitates entry of long chain fatty acids into the mitochondria. Because fatty acids are required for glucose-stimulated insulin secretion, we tested the hypothesis that CPT1A is essential to support islet β-cell function and mass. In this study, we describe genetic deletion of Cpt1a in pancreatic tissue (Cpt1a) using C57BL/6J mice.

View Article and Find Full Text PDF

Background: Diabetes mellitus (DM), a chronic metabolic disease, is characterized by long-term hyperglycemia resulting from the defect of insulin production and insulin resistance. The damage and dysfunction of pancreatic β-cells is a main link in DM development.

Methods: In this work, pancreatic β-cell line INS-1E cells were exposed to 30 mM glucose for 48 h to construct an in vitro DM model.

View Article and Find Full Text PDF

Roles for the long non-coding RNA / in pancreatic beta cell function.

iScience

January 2025

Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK.

Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of beta cell function. Here, we show that an lncRNA-transcribed antisense to Pax6, annotated as Pax6os1/PAX6-AS1, was upregulated by high glucose concentrations in human as well as murine beta cell lines and islets. Elevated expression was also observed in islets from mice on a high-fat diet and patients with type 2 diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!