Enzymatic hydrolysates of Laminaria japonica were evaluated for antioxidative activities using hydroxyl radical scavenging activity and protective effects against H(2)O(2)-induced DNA and cell damage. In addition, activities of antioxidative enzymes, including catalase, glutathione peroxidase, and glutathione S-transferase, of the enzymatic hydrolysates from L. japonica were also estimated. L. japonica was first enzymatically hydrolyzed by seven carbohydrases (Dextrozyme, AMG, Promozyme, Maltogenase, Termamyl, Viscozyme, and Celluclast [all from Novo Co., Novozyme Nordisk, Bagsvaerd, Denmark]) and five proteinases (Flavourzyme, Neutrase, Protamex, Alcalase [all from Novo Co.], and pancreatic trypsin). The hydroxyl radical scavenging activities of Promozyme and pancreatic trypsin hydrolysates from L. japonica were the highest as compared to those of the other carbohydrases and proteinases, and their 50% inhibitory concentration values were 1.67 and 317.49 mug/mL, respectively. The pancreatic trypsin hydrolysates of L. japonica exerted a protective effect on H(2)O(2)-induced DNA damage. We also evaluated the protective effect on hydroxyl radical-induced oxidative damage in PC12 cells via propidium iodide staining using a flow cytometer. The AMG and pancreatic trypsin hydrolysates of L. japonica dose-dependently protected PC12 cells against cell death caused by hydroxyl radical-induced oxidative damage. Additionally, we analyzed the activity of antioxidative enzymes such as catalase, glutathione peroxidase, and the phase II biotransformation enzyme glutathione S-transferase in L. japonica-treated cells. The activity of all antioxidative enzymes was higher in L. japonica-treated cells compared with the nontreated cells. These results indicate that enzymatic hydrolysates of L. japonica possess antioxidative activity.

Download full-text PDF

Source
http://dx.doi.org/10.1089/jmf.2007.0675DOI Listing

Publication Analysis

Top Keywords

hydrolysates japonica
20
enzymatic hydrolysates
16
pancreatic trypsin
16
antioxidative enzymes
12
trypsin hydrolysates
12
protective effects
8
effects h2o2-induced
8
japonica
8
laminaria japonica
8
hydroxyl radical
8

Similar Publications

Directed Evolution of an Alginate Lyase from sp. for Seaweed Fertilizer Production from the Brown Seaweed .

J Agric Food Chem

January 2025

College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China.

An alginate lyase (FsAly7) from sp. was engineered by directed evolution to improve its optimum temperature and thermostability. The optimum temperature of the positive mutant mFsAly7 (FsAly7-Ser43Pro) was increased by 5 °C, and the thermal inactivation half-lives at 40 and 45 °C were 4.

View Article and Find Full Text PDF

Angiotensin-I-converting enzyme inhibitory peptides from eel () bone collagen: preparation, identification, molecular docking, and protective function on HUVECs.

Front Nutr

December 2024

Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.

Introduction: Hypertension is a chronic cardiovascular disease, which can trigger some disease such as heart failure, loss of vision or kidney. There were various peptides derived from food that are recognized for their ability to inhibit ACE activity, potentially leading to a reduction in blood pressure levels . The primary objective of this research is to discover ACE inhibitory peptides from protein hydrolysates of eel bone collagen (EBCHs).

View Article and Find Full Text PDF

Potential to reduce methane production of using cultivated seaweeds supplementation to reshape the community structure of rumen microorganisms.

Environ Res

October 2024

Institute of Marine Science and Technology, Shandong University, Qingdao, 266003, China; Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission Technology, Shandong University, Qingdao, China; Global Ocean Negative Carbon Emissions (ONCE) Program Alliance, China. Electronic address:

Article Synopsis
  • Methane, although short-lived, has a stronger warming effect than carbon dioxide, and livestock is a major source of methane emissions.
  • The study aimed to reduce methane production by supplementing livestock feed with two types of cultivated seaweed and their enzymatic hydrolysates, which showed significant reductions in methane levels (over 75% and 50% in different trials).
  • Additionally, seaweed supplementation altered the rumen’s prokaryotic community, revealing important bacteria that help regulate methane emissions, indicating a potential pathway to mitigate greenhouse gases in livestock farming.
View Article and Find Full Text PDF

In this study, we characterized the bioactive properties of three important brown seaweed species, , , and , by subcritical water extraction (SWE), as these species are well known for their beneficial health effects. Their physiochemical properties, including potential antioxidant, antihypertensive, and α-glucosidase inhibitory activity, and the antibacterial activity of the hydroysates were also analyzed. The highest total phlorotannin, total sugar content, and reducing sugar content in the hydrolysates were 38.

View Article and Find Full Text PDF

Flooding events caused by severe rains and poor soil drainage can interfere with plant germination and seedling establishment. Rice is one of the cereal crops that has unique germination strategies under flooding. One of these strategies is based on the fast coleoptile elongation in order to reach the water surface and re-establish the contact with the air.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!