Molecular genetics of human pigmentation diversity.

Hum Mol Genet

Melanogenix Group, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia.

Published: April 2009

The genetic basis underlying normal variation in the pigmentary traits of skin, hair and eye colour has been the subject of intense research directed at understanding the diversity seen both between and within human populations. A combination of approaches have been used including comparative genomics of candidate genes and the identification of regions of the human genome under positive selection, together with genome-wide and specific allele association studies. Independent selection for different pigmentation gene sets has been found between Asian, European and African populations. Several genome-wide association studies for pigmentation have now been conducted and identified single nucleotide polymorphism (SNP) markers in known, TYR, TYRP1, OCA2, SLC45A2, SLC24A5, MC1R, ASIP, KITLG and previously unknown SLC24A4, IRF4, TPCN2, candidate genes. The contribution of SNP polymorphisms present in populations from South Asia have been tested and alleles found at TYR, SLC45A2 and SLC24A5 can largely account for differences between those of darkest and lightest skin reflectance using a simple additive model. Skin and hair colour associations in Europeans are found within a range of pigmentation gene alleles, whereas blue-brown eye colour can be explained by a single SNP proposed to regulate OCA2 expression. Functional testing of variant alleles has begun to connect phenotype correlations with biological differences. Variant MC1R alleles show direct correlations between the biochemical signalling properties of the encoded receptor and the red-hair fair skin pigmentation phenotype. Direct testing of a range of clonal melanocyte cultures derived from donor skin tissue characterized for three causal SNPs within SLC45A2, SLC24A5 and OCA2 has assessed their impact on melanin content and tyrosinase enzyme activity. From a culmination of genetic and functional studies, it is apparent that a number of genes impacting melanosome biogenesis or the melanin biosynthetic pathway are candidates to explain the diversity seen in human pigmentation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddp003DOI Listing

Publication Analysis

Top Keywords

slc45a2 slc24a5
12
human pigmentation
8
skin hair
8
eye colour
8
diversity human
8
candidate genes
8
association studies
8
pigmentation gene
8
pigmentation
6
skin
5

Similar Publications

Skin pigmentation is negatively associated with circulating vitamin D (VD) concentration. Therefore, genetic factors involved in skin pigmentation could influence the risk of vitamin D deficiency (VDD). We evaluated the impact genetic variants related to skin pigmentation on VD in Mexican population.

View Article and Find Full Text PDF

The Shitou goose, a highly recognized indigenous breed with gray plumage originating from Chaozhou Raoping in Guangdong Province, China, is renowned for being the largest goose species in the country. Notably, during the pure breeding process of Shitou geese, approximately 2% of the offspring in each generation unexpectedly exhibited white plumage. To better understand the mechanisms underlying white plumage color formation in Shitou geese, we conducted a comparative transcriptome analysis between white and gray feather follicles, aiming to identify key genes and microRNAs that potentially regulate white plumage coloration in this unique goose breed.

View Article and Find Full Text PDF

Skin colour: A window into human phenotypic evolution and environmental adaptation.

Mol Ecol

June 2024

Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.

As modern humans ventured out of Africa and dispersed around the world, they faced novel environmental challenges that led to geographic adaptations including skin colour. Over the long history of human evolution, skin colour has changed dramatically, showing tremendous diversity across different geographical regions, for example, the majority of individuals from the expansive lands of Africa have darker skin, whereas the majority of people from Eurasia exhibit lighter skin. What adaptations did lighter skin confer upon modern humans as they migrated from Africa to Eurasia? What genetic mechanisms underlie the diversity of skin colour observed in different populations? In recent years, scientists have gradually gained a deeper understanding of the interactions between pigmentation gene and skin colour through population-based genomic studies of different groups around the world, particularly in East Asia and Africa.

View Article and Find Full Text PDF

Identification of Candidate Genes for Red-Eyed (Albinism) Domestic Guppies Using Genomic and Transcriptomic Analyses.

Int J Mol Sci

February 2024

National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

Guppies are small tropical fish with brightly colored bodies and variable tail shapes. There are two phenotypes of domestic guppy eye color: red and black. The wild type is black-eyed.

View Article and Find Full Text PDF

The oncogenic transformation is driven by genetic and epigenetic alterations influencing cancer cell fate. These alterations also result in metabolic reprogramming by modulating the expression of membrane Solute Carrier (SLC) transporters involved in biomolecules trafficking. SLCs act as tumor suppressors or promoters influencing cancer methylome, tumor growth, immune-escape, and chemoresistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!