Background: Omega 3 fatty acids have been found to inhibit proliferation, induce apoptosis, and promote differentiation in various cell types. The processes of cell survival, expansion, and differentiation are of key importance in the regulation of hematopoiesis. We investigated the role of omega 3 fatty acids in controlling the frequency of various myeloid progenitor cells in the bone marrow of mice. Increased progenitor cell frequency and blocked differentiation are characteristics of hematopoietic disorders of the myeloid lineage, such as myeloproliferative diseases and myeloid leukemias.

Results: We found that increasing the proportion of omega 3 fatty acids relative to the proportion of omega 6 fatty acids in the diet caused increased differentiation and reduced the frequency of myeloid progenitor cells in the bone marrow of mice. Furthermore, this had no adverse effect on peripheral white blood cell counts.

Conclusion: Our results indicate that omega 3 fatty acids impact hematopoietic differentiation by reducing myeloid progenitor cell frequency in the bone marrow and promoting progenitor cell differentiation. Further exploration of this discovery could lead to the use of omega 3 fatty acids as a therapeutic option for patients that have various disorders of hematopoiesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669087PMC
http://dx.doi.org/10.1186/1476-511X-8-9DOI Listing

Publication Analysis

Top Keywords

omega fatty
28
fatty acids
28
progenitor cell
20
myeloid progenitor
16
bone marrow
16
cell frequency
12
marrow mice
12
cell
8
frequency bone
8
cell differentiation
8

Similar Publications

Tumor Metabolism as a Factor Affecting Diversity in Cancer Cachexia.

Am J Physiol Cell Physiol

January 2025

Departments of Surgery and Oncology, University of Calgary Arnie Charbonneau Cancer Institute, University of Calgary.

Cancer cachexia is a multifaceted metabolic syndrome characterized by muscle wasting, fat redistribution, and metabolic dysregulation, commonly associated with advanced cancer but sometimes also evident in early-stage disease. More subtle body composition changes have also been reported in association with cancer, including sarcopenia, myosteatosis, and increased fat radiodensity. Emerging evidence reveals that body composition changes including sarcopenia, myosteatosis, and increased fat radiodensity, arise from distinct biological mechanisms and significantly impact survival outcomes.

View Article and Find Full Text PDF

Background: The burden of ischemic heart disease (IHD) due to low intake of seafood omega-3 fatty acids is a major global health concern, particularly impacting mortality and disability rates. Understanding these trends and demographic variations offers insights for targeted public health interventions.

Methods: This study used data from the Global Burden of Disease (GBD) 2021 database to analyze the IHD burden attributable to low omega-3 intake across 204 countries from 1990 to 2021, stratified by age, sex, and region.

View Article and Find Full Text PDF

Background: Recent research suggests that omega-3 fatty acids may play a role in bone metabolism through their influence on bone mineral density (BMD) and the regulation of bone turnover markers. However, epidemiological evidence linking omega-3 intake to the risk of developing osteoporosis is still emerging and remains inconclusive. This study aims to clarify the role of dietary omega-3 fatty acids in the prevention of osteoporosis.

View Article and Find Full Text PDF

A nutritious diet is crucial for good health and cognitive function, including working memory (WM). Nutrients like omega-3 fatty acids, antioxidants, and vitamins found in whole foods have been linked to improved WM. Examining the impact of dietary habits on WM in women, who face hormonal and health-related challenges, is important.

View Article and Find Full Text PDF

Antioxidant capacity and athletic condition of endurance horses undergoing nutraceutical supplementation.

J Equine Vet Sci

January 2025

Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy.

Endurance is an equestrian discipline that primarily relies on aerobic metabolism. Intense aerobic exercise produces reactive oxygen species due to an imbalance between oxidant and antioxidant substances, known as oxidative stress, which may reduce athletic performance. This study evaluated the effects of a feed supplement containing natural antioxidants and omega-3 fatty acids on the blood antioxidant activity and the athletic condition of endurance horses undergoing an exercise test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!