Identification of novel antibacterial peptides by chemoinformatics and machine learning.

J Med Chem

Department of Medicine, Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.

Published: April 2009

The rise of antibiotic resistant pathogens is one of the most pressing global health issues. Discovery of new classes of antibiotics has not kept pace; new agents often suffer from cross-resistance to existing agents of similar structure. Short, cationic peptides with antimicrobial activity are essential to the host defenses of many organisms and represent a promising new class of antimicrobials. This paper reports the successful in silico screening for potent antibiotic peptides using a combination of QSAR and machine learning techniques. On the basis of initial high-throughput measurements of activity of over 1400 random peptides, artificial neural network models were built using QSAR descriptors and subsequently used to screen an in silico library of approximately 100,000 peptides. In vitro validation of the modeling showed 94% accuracy in identifying highly active peptides. The best peptides identified through screening were found to have activities comparable or superior to those of four conventional antibiotics and superior to the peptide most advanced in clinical development against a broad array of multiresistant human pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm8015365DOI Listing

Publication Analysis

Top Keywords

machine learning
8
peptides
7
identification novel
4
novel antibacterial
4
antibacterial peptides
4
peptides chemoinformatics
4
chemoinformatics machine
4
learning rise
4
rise antibiotic
4
antibiotic resistant
4

Similar Publications

Developing a Sleep Algxorithm to Support a Digital Medicine System: Noninterventional, Observational Sleep Study.

JMIR Ment Health

December 2024

Otsuka Pharmaceutical Development & Commercialization, Inc, 508 Carnegie Center Drive, Princeton, NJ, 08540, United States, 1 609 535 9035.

Background: Sleep-wake patterns are important behavioral biomarkers for patients with serious mental illness (SMI), providing insight into their well-being. The gold standard for monitoring sleep is polysomnography (PSG), which requires a sleep lab facility; however, advances in wearable sensor technology allow for real-world sleep-wake monitoring.

Objective: The goal of this study was to develop a PSG-validated sleep algorithm using accelerometer (ACC) and electrocardiogram (ECG) data from a wearable patch to accurately quantify sleep in a real-world setting.

View Article and Find Full Text PDF

Background: Anxiety and depression represent prevalent yet frequently undetected mental health concerns within the older population. The challenge of identifying these conditions presents an opportunity for artificial intelligence (AI)-driven, remotely available, tools capable of screening and monitoring mental health. A critical criterion for such tools is their cultural adaptability to ensure effectiveness across diverse populations.

View Article and Find Full Text PDF

Predicting phage-host interactions via feature augmentation and regional graph convolution.

Brief Bioinform

November 2024

Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China.

Identifying phage-host interactions (PHIs) is a crucial step in developing phage therapy, which is the promising solution to addressing the issue of antibiotic resistance in superbugs. However, the lifestyle of phages, which strongly depends on their host for life activities, limits their cultivability, making the study of predicting PHIs time-consuming and labor-intensive for traditional wet lab experiments. Although many deep learning (DL) approaches have been applied to PHIs prediction, most DL methods are predominantly based on sequence information, failing to comprehensively model the intricate relationships within PHIs.

View Article and Find Full Text PDF

This scoping review summarizes two emerging electrical impedance technologies: electrical impedance myography (EIM) and electrical impedance tomography (EIT). These methods involve injecting a current into tissue and recording the response at different frequencies to understand tissue properties. The review discusses basic methods and trends, particularly the use of electrodes: EIM uses electrodes for either injection or recording, while EIT uses them for both.

View Article and Find Full Text PDF

Objective: To explore whether radiomics analysis of pericoronary adipose tissue (PCAT) captured by coronary computed tomography angiography (CCTA) could discriminate unstable angina (UA) from stable angina (SA).

Methods: In this single-center retrospective case-control study, coronary CT images and clinical data from 240 angina patients were collected and analyzed. Patients with unstable angina ( = 120) were well-matched with those having stable angina ( = 120).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!