Capturing In+ monomers in a neutral weakly coordinating environment.

J Am Chem Soc

Centre for Catalysis Research and Innovation and Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5.

Published: April 2009

The application of a new bis(imino)pyridine ligand allowed the isolation and characterization of [{2,4-(t)Bu(2)C(6)H(3)N=CPh}(2)(NC(5)H(3))]In(+)(OTf)(-) as the first low-valent, main-group metal complex of this ligand scaffold. Structural analysis revealed a unique monomeric In(I) species with a surprisingly long metal-ligand bond. In conjunction with a density functional theory investigation, this complex is shown to display only nominal donor-acceptor interactions between the metal and the neutral ligand. The mixing of the occupied 5s metal orbital with the occupied ligand orbitals reduces the reactivity of the central atom and thus stabilizes this species. An In(III) species, [{2,4-(t)Bu(2)C(6)H(3)N=CPh}(2)(NC(5)H(3))]InCl(2)(+)InCl(4)(-) was also isolated and structurally characterized utilizing this ligand frame.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja901128qDOI Listing

Publication Analysis

Top Keywords

ligand
5
capturing in+
4
in+ monomers
4
monomers neutral
4
neutral weakly
4
weakly coordinating
4
coordinating environment
4
environment application
4
application bisiminopyridine
4
bisiminopyridine ligand
4

Similar Publications

The molar dose of FAPI administered impacts on the FAP-targeted PET imaging and therapy in mouse syngeneic tumor models.

Eur J Nucl Med Mol Imaging

January 2025

Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.

Purpose: Since fibroblast activation protein (FAP), one predominant biomarker of cancer associated fibroblasts (CAFs), is highly expressed in the tumor stroma of various epidermal-derived cancers, targeting FAP for tumor diagnosis and treatment has shown substantial potentials in both preclinical and clinical studies. However, in preclinical settings, tumor-bearing mice exhibit relatively low absolute FAP expression levels, leading to challenges in acquiring high-quality PET images using radiolabeled FAP ligands (FAPIs) with low molar activity, because of which a saturation effect in imaging is prone to happen. Moreover, how exactly the molar dose of FAPI administered to a mouse influences the targeted PET imaging and radiotherapy remains unclear now.

View Article and Find Full Text PDF

Designing dual-targeted nanomedicines to enhance tumor delivery efficacy is a complex challenge, largely due to the barrier posed by blood vessels during systemic delivery. Effective transport across endothelial cells is, therefore, a critical topic of study. Herein, we present a synthetic biology-based approach to engineer dual-targeted ferritin nanocages (Dt-FTn) for understanding receptor-mediated transport across tumor endothelial cells.

View Article and Find Full Text PDF

Cascade-Responsive Nanoparticles for Efficient CRISPR/Cas9-Based Glioblastoma Gene Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.

CRISPR/Cas9 (CRISPR, clustered regularly interspaced short palindromic repeats) gene editing technology represents great promise for treating glioblastoma (GBM) due to its potential to permanently eliminate tumor pathogenic genes. Unfortunately, delivering CRISPR to the GBM in a safe and effective manner is challenging. Herein, a glycosylated and cascade-responsive nanoparticle (GCNP) that can effectively cross the blood-brain barrier (BBB) and activate CRISPR/Cas9-based gene editing only in the GBM is designed.

View Article and Find Full Text PDF

Patients diagnosed with metastatic basal cell carcinoma (BCC) have a poor prognosis. The current standard of care for adults with locally advanced or metastatic BCC who are not candidates for surgery or radiation therapy is treatment with hedgehog pathway inhibitors (HHIs). For patients who progress while on this therapy, further treatment options are limited.

View Article and Find Full Text PDF

Carbonyl complexes of metals with an α-diimine ligand exhibit both emission and ligand-selective photodissociation from MLCT states. Studying this photodissociative mechanism is challenging for experimental approaches due to an ultrafast femtosecond timescale and spectral overlap of multiple photoproducts. The photochemistry of a prototypical system is investigated with non-adiabatic dynamic simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!