Whipstitch-post (WSP) tibial fixation is one of the most widely used and clinically successful methods of soft tissue graft fixation for anterior cruciate ligament reconstruction (ACLR). However, some consider the method prone to laxity. We hypothesized that WSP would have low elongation rates after experimental cyclic loading. Eight cadaveric human semitendinosus and gracilis (ST/Gr) tendons had whipstitches woven into their overlapped ends. The grafts were looped around a metal bar, pneumatically clamped, and cyclically loaded. The adjusted mean experimental graft elongation for the WSP was 1.13 mm with a maximum elongation of 1.64 mm and a standard deviation of 0.32. These values are equivalent to the lowest published cyclic loading tibial fixation elongation data. Whipstitch-post tibial ACLR fixation is biomechanically sound with among the lowest rates of elongation after laboratory cyclic loading.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00167-009-0761-9DOI Listing

Publication Analysis

Top Keywords

cyclic loading
16
tibial fixation
12
anterior cruciate
8
cruciate ligament
8
ligament reconstruction
8
elongation
6
fixation
5
elongation simulated
4
simulated whipstitch
4
whipstitch post
4

Similar Publications

Owing to the differences in sedimentary environments in the mining areas of western China, the mechanical properties of rocks in this region are significantly different from those in the central and eastern regions. Therefore, uniaxial cyclic loading-unloading tests were conducted on fine sandstone found in many roof rocks to study the evolution laws of mechanical properties, deformation characteristics, acoustic emission (AE) parameters, and energy under cyclic loading and unloading conditions. The accumulated residual strain, dissipative energy, acoustic emission cumulative ringing counts, and cumulative energy were introduced to characterize the degree of rock damage.

View Article and Find Full Text PDF

An investigation of the mechanism of adjacent segment disease in a porcine spine model.

Clin Biomech (Bristol)

January 2025

Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada; Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada. Electronic address:

Background: Fusion changes the biomechanics of the spine leading to the potential development of adjacent segment disease. Despite many studies on adjacent segment disease, it is largely unknown how spinal fixation affects the mechanical properties of the adjacent disc. The purpose of this study was to assess whether axial compression causes mechanical disruption to the annulus when the caudal spinal level is immobilized or injured.

View Article and Find Full Text PDF

Polyesters featuring a linear topology and in-chain 1,3-cyclobutane rings, synthesized via ring-opening polymerization (ROP) of 2-oxabicyclo[2.1.1]hexan-3-one (4R-BL, R = Bu, Ph) through a coordination-insertion mechanism, display excellent thermal and hydrolytic stability, making them promising candidates for sustainable circular materials.

View Article and Find Full Text PDF

Novel Nonaqueous PD/PZ/NMP Absorbent for Energy-Efficient CO Capture: Insights into the Crystal-Phase Regulation Mechanism of the Powdery Product.

Environ Sci Technol

January 2025

School of Environmental Science and Engineering, Shenzhen Key Laboratory of Municipal Solid Waste Recycling Technology and Management, Southern University of Science and Technology, Shenzhen 518055, China.

Solid-liquid biphasic absorbents are a promising solution for overcoming the high-energy consumption challenge faced by liquid amine-based CO capture technologies. However, their practical applications are often hindered by difficulties in separating viscous solid-phase products. This study introduces a novel nonaqueous absorbent system (PD/PZ/NMP) composed of 4-amino-1-methylpiperidine (PD), piperazine (PZ), and -methyl-2-pyrrolidone (NMP), engineered to produce easily separable powdery products.

View Article and Find Full Text PDF

Polyurethanes (PU) make up a large portion of commodity plastics appearing in applications including insulation, footwear, and memory foam mattresses. Unfortunately, as thermoset polymers, polyurethanes lack a clear path for recycling and repurposing, creating a sustainability issue. Herein, using dynamic depolymerization, we demonstrate a simple one-pot synthesis for preparation of an upcycled polyurethane grafted graphene material (PU-GO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!