Effect of stimulation frequency on force, net power output, and fatigue in mouse soleus muscle in vitro.

Can J Physiol Pharmacol

Department of Biomolecular and Sport Sciences, Faculty of HLS, Coventry University, James Starley Building, Coventry CV15FB, United Kingdom.

Published: March 2009

The effects of electrical stimulation frequency on force, work loop power output, and fatigue of mouse soleus muscle were investigated in vitro at 35 degrees C. Increasing stimulation frequency did not significantly affect maximal isometric tetanic stress (overall mean +/- SD, 205 +/- 16.6 kN.m-2 between 70 and 160 Hz) but did significantly increase the rate of force generation. The maximal net power output during work loops significantly increased with stimulation frequency: 18.2 +/- 3.7, 22.5 +/- 3.3, 26.8 +/- 3.7, and 28.6 +/- 3.4 W.kg(-1) at 70, 100, 130, and 160 Hz, respectively. The stimulation frequency that was used affected the pattern of fatigue observed during work loop studies. At stimulation frequencies of 100 and 130 Hz, there were periods of mean net negative work during the fatigue tests due to a slowing of relaxation rate. In contrast, mean net work remained positive throughout the fatigue test when stimulation frequencies of 70 and 160 Hz were used. The highest cumulative work during the fatigue test was performed at 70 and 160 Hz, followed by 130 Hz, then 100 Hz. Therefore, stimulation frequency affects power output and the pattern of fatigue in mouse soleus muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1139/y09-002DOI Listing

Publication Analysis

Top Keywords

stimulation frequency
24
power output
16
fatigue mouse
12
mouse soleus
12
soleus muscle
12
stimulation
8
frequency force
8
net power
8
output fatigue
8
work loop
8

Similar Publications

Zero echo time (zero-TE) pulse sequences provide a quiet and artifact-free alternative to conventional functional magnetic resonance imaging (fMRI) pulse sequences. The fast readouts (<1 ms) utilized in zero-TE fMRI produce an image contrast with negligible contributions from blood oxygenation level-dependent (BOLD) mechanisms, yet the zero-TE contrast is highly sensitive to brain function. However, the precise relationship between the zero-TE contrast and neuronal activity has not been determined.

View Article and Find Full Text PDF

Tourette syndrome (TS) is a neuropsychiatric disorder characterized by chronic motor and phonic tics, with a higher prevalence among boys. This condition can significantly impact patients' learning and daily life. Due to the limited efficacy and potential side effects of pharmacological treatments for TS, there is a critical need to develop novel, tailored therapeutic strategies.

View Article and Find Full Text PDF

A strong repetitive stimulus can occasionally enhance axonal excitability, leading to the generation of afterdischarge. This afterdischarge outlasts the stimulus period and originates either from the physiological spike initiation site, typically the axon initial segment, or from ectopic sites for spike generation. One of the possible mechanisms underlying the stimulus-induced ectopic afterdischarge is the local depolarization due to accumulated potassium ions surrounding the axonal membranes of the distal portion.

View Article and Find Full Text PDF

Aims And Objectives: The study aimed to compare the auditory perception status of children from different socioeconomic backgrounds, specifically urban versus rural. It also examined the correlation between outcome measures and the frequency of auditory verbal therapy sessions attended, as well as the impact of continuous electric analog stimulation on the age of implantation.

Material And Methods: A retrospective cohort study was carried out on 30 children who have received unilateral cochlear implantation in rural versus urban backgrounds.

View Article and Find Full Text PDF

The dose-response relationship between toxicants and organisms is the most fundamental principle in toxicological risk assessment. However, multiphasic non-linear responses are poorly understood and the underlying mechanisms remain elusive. In this study, we subjected the indicator plant Tillandsia usneoides to 5 or 10 time gradients of 1 mM Pb, and assessed the response patterns of five damage markers and eight resistance markers in the leaves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!