The past decade has witnessed burgeoning evidence that antidepressant medications and physical exercise increase the expression of hippocampal brain-derived neurotrophic factor (BDNF). This phenomenon has gained widespread appeal, because BDNF is one of the first macromolecules observed to play a central role not only in the treatment of mood disorders, but also in neuronal survival-, growth-, and plasticity-related signaling cascades. Thus, it has become critical to understand how BDNF synthesis is regulated. Much evidence exists that changes in BDNF expression result from the activation/phosphorylation of the transcription factor, cAMP-response-element binding protein (CREB) following the administration of antidepressant medications. Utilizing a mouse model genetically engineered with an inducible CREB repressor, our current study provides evidence that increases in BDNF expression and cellular survival signaling resulting from physical exercise are also dependent upon activation of this central transcription factor. The transcription and expression of hippocampal BDNF, as well as the activation of Akt, a key survival signaling molecule, were measured following acute exercise, and also following short-term treatment with the norepinephrine reuptake inhibitor, reboxetine. We found that both interventions led to a marked increase in hippocampal BDNF mRNA, BDNF protein, and Akt phosphorylation (as well as CREB phosphorylation) in wild-type mice. As expected, activation of the CREB repressor in mutant mice sharply decreased CREB phosphorylation. In addition, all measures noted above remained at baseline levels when mutant mice exercised or received reboxetine. Increases in BDNF and phospho-Akt were also prevented when mutant mice received a combination of exercise and antidepressant treatment. The results are discussed in the context of what is currently known about BDNF signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756465 | PMC |
http://dx.doi.org/10.1002/hipo.20579 | DOI Listing |
Gut Microbes
December 2025
Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA.
To study the impact of differing specific pathogen-free gut microbiomes (GMs) on a murine model of inflammatory bowel disease, selected GMs were transferred using embryo transfer (ET), cross-fostering (CF), and co-housing (CH). Prior work showed that the GM transfer method and the microbial composition of donor and recipient GMs can influence microbial colonization and disease phenotypes in dextran sodium sulfate-induced colitis. When a low richness GM was transferred to a recipient with a high richness GM via CH, the donor GM failed to successfully colonize, and a more severe disease phenotype resulted when compared to ET or CF, where colonization was successful.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Icm/Dot Type IV secretion system (T4SS) to replicate in amoebae and macrophages. The opportunistic pathogen responds to stress by forming 'viable but non-culturable' (VBNC) cells, which cannot be detected by standard cultivation-based techniques. In this study, we document that L.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6.
Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo mutations lead to intellectual disability and autism spectrum disorder.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, United States of America.
Colorectal cancer (CRC) remains a leading cause of cancer death due to metastatic spread. LIN28B is overexpressed in 30% of CRCs and promotes metastasis, yet its mechanisms remain unclear. In this study, we genetically modified CRC cell lines to overexpress LIN28B, resulting in enhanced PI3K/AKT pathway activation and liver metastasis in mice.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Division of Neurology, Cincinnati Children's Hospital, 3333 Burnet Ave, Cincinnati, OH 45229, United States.
Myotonic Dystrophy type 2 (DM2) is a multisystem disease affecting many tissues, including skeletal muscle, heart, and brain. DM2 is caused by unstable expansion of CCTG repeats in an intron 1 of a gene coding for cellular nuclear binding protein (CNBP). The expanded CCTG repeats cause DM2 pathology due to the accumulation of RNA CCUG repeats, which affect RNA processing in patients' cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!