Bone metastases in prostate cancer are predominantly osteoblastic. To study regulatory mechanisms underlying the establishment of prostate cancer within an osteoblastic microenvironment, human androgen-sensitive prostate carcinoma cells (LNCaP) were treated with culture medium conditioned by human osteoblast-derived sarcoma cells (OHS), and activated signalling pathways in the carcinoma cells were analyzed using microarrays with tyrosine kinase substrates. Network interaction analysis of substrates with significantly increased phosphorylation levels revealed that signalling pathways mediated by EGFR and ERBB2 were activated in LNCaP cells under OHS influence but also by androgen treatment. Activation of EGFR/ERBB2 signalling was also found in LNCaP cells in cocultures with OHS cells or osteoblastic cells that had been differentiated from human mesenchymal stem cells. Our experimental data suggests osteoblast-directed induction of signalling activity via EGFR and ERBB2 in prostate carcinoma cells and may provide a rationale for the use of EGFR or ERBB2 inhibition in systemic prevention or treatment of metastatic prostate cancer in the androgen-sensitive stage of the disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10585-009-9248-9DOI Listing

Publication Analysis

Top Keywords

carcinoma cells
16
prostate carcinoma
12
prostate cancer
12
egfr erbb2
12
cells
10
androgen-sensitive prostate
8
cancer osteoblastic
8
cells ohs
8
signalling pathways
8
lncap cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!