The HPA3 peptide is an analogue of the linear antimicrobial peptide, HP(2-20), isolated from the N-terminal region of the Helicobacter pylori ribosomal protein, able to interact with zwitterionic lipid membranes and generate pores. Herein we focused on the importance of the degree of unsaturation of lipid acyl chains on HPA3 peptide-membrane interactions. Electrophysiology experiments carried out in reconstituted lipid membranes formed from phosphatidylcholines with one (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine - POPC) and two monounsaturated acyl chains (1,2-dioleoyl-sn-glycero-3-phosphocholine - DOPC) demonstrate that the lesser degree of the packing density of membrane lipids encountered in DOPC-based planar membranes greatly enhances the electric activity of pores created by the HPA3 peptide. Data derived from fluorescence spectroscopy experiments demonstrate that upon interaction with the bilayer, the HPA3 peptide translocates to the trans-side of the membrane. From the same experiments, we demonstrate that in the case of DOPC-based planar membranes, the net amount of HPA3 peptide which passes across the membrane and re-dissolves in the trans solution is almost 22% greater than POPC-based membranes. Such data further emphasize the modulatory role played by lipid acyl chain in determining antimicrobial peptides-lipids interactions, and demonstrate that small differences in unsaturation degree can impose a sizeable influence on HPA3 peptide activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10863-009-9204-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!