Dissecting the function of neural circuits requires the capability to stimulate and record from the component neurones. Optimally, the methods employed should enable precise activation of distinct elements within the circuit and high-fidelity readout of the neuronal response. Here we compare two methods for neural stimulation in the pharyngeal system of Caenorhabditis elegans by evoking postsynaptic potentials (PSPs) either by electrical stimulation or by expression of the channelrhodopsin [ChR2(gf)] in cholinergic neurones of the pharyngeal circuit. Using a dissection that isolates the pharynx and its embedded neural system of 20 neurones permits analysis of the neurotransmitter pathways within this microcircuit. We describe protocols for selective electrically evoked or ChR2-mediated cholinergic synaptic events in this circuit. The latter was achieved by generating strains, punc-17::ChR2(gf);yfp, that express ChR2(gf) in cholinergic neurones. PSPs evoked by both electrical and light stimulation exhibited a rapid time-course and were blocked by cholinergic receptor antagonists and rapidly reversed on cessation of the stimulus. Electrically evoked PSPs were also reduced in a hypomorphic mutant for the synaptic vesicle acetylcholine transporter, unc-17, further indicating they are nicotinic cholinergic PSPs. The pharyngeal nervous system is exquisitely sensitive to both electrical and light activation. For the latter, short light pulses of 200 mus delivered to punc-17::ChR2(gf);yfp are capable of generating full muscle action potentials. We conclude that the application of optogenetic approaches to the C. elegans isolated pharynx preparation opens the way for a precise molecular dissection of synaptic events in the pharyngeal microcircuit by providing a molecular and system level analysis of the synapses that control the feeding behaviour of C. elegans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10158-009-0088-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!