We examined the involvement of focal adhesion kinase (FAK) in mechano-regulated signalling to protein synthesis by combining muscle-targeted transgenesis with a physiological model for un- and reloading of hindlimbs. Transfections of mouse tibialis anterior muscle with a FAK expression construct increased FAK protein 1.6-fold versus empty transfection in the contralateral leg and elevated FAK concentration at the sarcolemma. Altered activation status of phosphotransfer enzymes and downstream translation factors showed that FAK overexpression was functionally important. FAK auto-phosphorylation on Y397 was enhanced between 1 and 6 h of reloading and preceded the activation of p70S6K after 24 h of reloading. Akt and translation initiation factors 4E-BP1 and 2A, which reside up- or downstream of p70S6K, respectively, showed no FAK-modulated regulation. The findings identify FAK as an upstream element of the mechano-sensory pathway of p70S6K activation whose Akt-independent regulation intervenes in control of muscle mass by mechanical stimuli in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00421-009-1032-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!