The D1 protein is a high mobility group A (HMGA)-like nonhistone chromosomal protein with primary localization to certain AT-rich satellite DNA sequences within heterochromatin. The binding of D1 to euchromatic sequences is less studied and the functional significance of its chromosomal associations is unclear. By taking advantage of existing P-insertion alleles of the D1 gene, I generated D1 null mutations to investigate the phenotypic effect of loss of the D1 gene. In contrast to a previous report, I determined that the D1 gene is not essential for viability of Drosophila melanogaster, and moreover, that loss of D1 has no obvious phenotypic effects. My tests for an effect of D1 mutations on PEV revealed that it is not a suppressor of variegation, as concluded by other investigators. In fact, the consequence of loss of D1 on one of six variegating rearrangements tested, T(2;3)Sb(V), was dominant enhancement of PEV, suggesting a role for the protein in euchromatic chromatin structure and/or transcription. A study of D1 protein sequence conservation highlighted features shared with mammalian HMGA proteins, which function as architectural transcription factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674813PMC
http://dx.doi.org/10.1534/genetics.109.101386DOI Listing

Publication Analysis

Top Keywords

chromosomal protein
8
drosophila melanogaster
8
protein
5
multi-at-hook chromosomal
4
protein drosophila
4
melanogaster dispensable
4
dispensable viability
4
viability protein
4
protein high
4
high mobility
4

Similar Publications

Background: Chromosomal inversions are underappreciated causes of rare diseases given their detection, resolution, and clinical interpretation remain challenging. Heterozygous mutations in the MEIS2 gene cause an autosomal dominant syndrome characterized by intellectual disability, cleft palate, congenital heart defect, and facial dysmorphism at variable severity and penetrance.

Case Presentation: Herein, we report a Chinese girl with intellectual disability, developmental delay, and congenital heart defect, in whom G-banded karyotype analysis identified a de novo paracentric inversion 46,XX, inv(15)(q15q26.

View Article and Find Full Text PDF

Identification of a distal enhancer of Ucp1 essential for thermogenesis and mitochondrial function in brown fat.

Commun Biol

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.

Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.

View Article and Find Full Text PDF

Delays in mitosis trigger p53-dependent arrest in G1 of the next cell cycle, thus preventing repeated cycles of chromosome instability and aneuploidy. Here we show that MDM2, the p53 ubiquitin ligase, is a key component of the timer mechanism triggering G1 arrest in response to prolonged mitosis. This timer function arises due to the attenuation of protein synthesis in mitosis.

View Article and Find Full Text PDF

Lactylation modulation identifies key biomarkers and therapeutic targets in KMT2A-rearranged AML.

Sci Rep

January 2025

National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.

Acute Myeloid Leukemia (AML) with KMT2A rearrangements (KMT2Ar), found on chromosome 11q23, is often called KMT2A-rearranged AML (KMT2Ar-AML). This variant is highly aggressive, characterized by rapid disease progression and poor outcomes. Growing knowledge of epigenetic changes, especially lactylation, has opened new avenues for investigation and management of this subtype.

View Article and Find Full Text PDF

Co-profiling of single-cell gene expression and chromatin landscapes in stickleback pituitary.

Sci Data

January 2025

Laboratory of Molecular Ecological Genetics, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.

The pituitary gland is a key endocrine gland with various physiological functions including metabolism, growth, and reproduction. It comprises several distinct cell populations that release multiple polypeptide hormones. Although the major endocrine cell types are conserved across taxa, the regulatory mechanisms of gene expression and chromatin organization in specific cell types remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!