Osteoblast and osteoclast differentiation in an in vitro three-dimensional model of bone.

Tissue Eng Part A

Dipartimento di Oncologia, Biologia e Genetica, Istituto Nazionale per la Ricerca sul Cancro, Università di Genova, Genova, Italy.

Published: September 2009

There is increasing interest in developing new in vitro tissue models using typical tissue engineering approaches. This study was designed to (1) develop a novel three-dimensional (3D) in vitro model of bone by seeding murine primary osteoblasts and osteoclast precursors on a resorbable porous ceramic scaffold based on silicon-stabilized tricalcium phosphate (Skelite), and (2) investigate bone cell interactions in a 3D environment mimicking an in vivo condition and compare it to traditional two-dimensional (2D) cultures. Murine primary osteoblasts from C57Bl6/J mice and osteoclast precursors from C57Bl/6-Tg(ACTB-EGFP)1Osb/J mice were co-cultured on 3D Skelite scaffolds and on standard plastic culture dishes. The differentiation of these cells in both culture conditions was compared by histology (hematoxylin-eosin staining and polarized light analysis), immunohistochemistry (collagen type I), and gene expression analysis by real-time PCR for Runt-related transcription factor 2, osterix, osteocalcin, cathepsin K, and tartrate resistant acid phosphatase. To analyze and compare bone turnover in 3D and 2D co-cultures, we evaluated the modulation of RANKL and OPG mRNA expression. We observed an enhancement of osteoblast differentiation in the 3D mineralized environment that in turn promoted earlier osteoclast differentiation. In this paper, we also report that the increased osteoblast differentiation in the 3D model led to a deposition of extracellular matrix that faithfully reflected the morphology of bone tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.tea.2008.0501DOI Listing

Publication Analysis

Top Keywords

osteoclast differentiation
8
model bone
8
murine primary
8
primary osteoblasts
8
osteoclast precursors
8
osteoblast differentiation
8
differentiation
5
bone
5
osteoblast osteoclast
4
differentiation vitro
4

Similar Publications

Tissue regeneration involves dynamic dialogue between and among different cells and their surrounding matrices. Bone regeneration is specifically governed by reciprocity between osteoblasts and osteoclasts within the bone microenvironment. Osteoclast-directed resorption and osteoblast-directed formation of bone are essential to bone remodeling, and the crosstalk between these cells is vital to curating a sequence of events that culminate in the creation of bone tissue.

View Article and Find Full Text PDF

Ano5 mutation leads to bone dysfunction of gnathodiaphyseal dysplasia disturbing Akt signaling.

Bone Rep

March 2025

Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China.

Background: Gnathodiaphyseal dysplasia (GDD) is a rare autosomal dominant genetic disease characterized by osteosclerosis of the tubular bones and cemento-osseous lesions of the mandibles. () is the pathogenic gene, however, the specific molecular mechanism of GDD remains unclear. Herein, a knockin ( ) mouse model expressing the human mutation p.

View Article and Find Full Text PDF

Background: Bone-invasive Pituitary Neuroendocrine Tumors (BI PitNETs) epitomize an aggressive subtype of pituitary tumors characterized by bone invasion, culminating in extensive skull base bone destruction and fragmentation. This infiltration poses a significant surgical risk due to potential damage to vital nerves and arteries. However, the mechanisms underlying bone invasion caused by PitNETs remain elusive, and effective interventions for PitNET-induced bone invasion are lacking in clinical practice.

View Article and Find Full Text PDF

miR-208a-3p discriminates osteoporosis, predicts fracture, and regulates osteoclast activation through targeting STC1.

J Orthop Surg Res

January 2025

Department of Rehabilitation, The Affiliated Hospital of Youjiang Medical University for Nationalities, No.18, Zhongshan 2nd Road, Baise, 533000, Guangxi Zhuang Autonomous Region, China.

Background: Osteoporosis (OP) frequently occurs in post-menopausal women, increasing the risk of fracture. Early screening OP could improve the prevention of fractures.This study focused on the significance of miR-208a-3p in diagnosing OP and development regulation, aiming to explore a novel biomarker and therapeutic target for OP.

View Article and Find Full Text PDF

Epiregulin ameliorates ovariectomy-induced bone loss through orchestrating the differentiation of osteoblasts and osteoclasts.

J Bone Miner Res

January 2025

NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.

Epiregulin plays a role in a range of biological activities including malignancies. This study aims to investigate the potential contribution of epiregulin to bone cell differentiation and bone homeostasis. The data showed that epiregulin expression was upregulated during osteogenesis but downregulated during adipogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!