The kinetics and cleavage products of 2-hydroxypropyl p-nitrophenyl phosphate were determined in methanol containing the di-Zn(II) complex of bis-1,3-N1,N1'-(1,5,9-triazacyclododecyl)propane (4). Time-dependent 1H NMR spectra of the reaction mixture at sspH 9.8 +/- 0.1 show that the catalytic reaction proceeds via a cyclic phosphate (4-methylethylene phosphate, 2) that is subsequently cleaved into a kinetic mixture of two isomeric products, 2-hydroxypropyl methyl phosphate (3) and 1-hydroxypropan-2-yl methyl phosphate (3a), in a 29/71 ratio. In the presence of 4, the kinetic mixture of 3/3a is transformed into a thermodynamic mixture of 72/28 3/3a. The time-dependent 1H NMR spectra of 4 and a 22/78 mixture of 3/3a in CD3OH show that the formation of the thermodynamic mixture occurs on the same time scale as replacement of the P-OCH3 group of the 3/3a starting materials with OCD3. Detailed kinetic studies indicate that the dominant process for loss of the OCH3 group and equilibration of 3/3a is via a 4-catalyzed process where each of the isomers cyclizes to methylethylene phosphate (2), which subsequently reforms the 3/3a thermodynamic mixture. The kcatmax for 4-catalyzed cyclization of 3 and three other 2-hydroxypropyl O-alkyl phosphates (alkyl = CF3CH2- (6a), CH2FCH2- (6b), and CH3CH2- (6c)) has been determined, and the Brønsted plot comprising the log kcatmax vs leaving group sspKa that includes several previously studied 2-hydroxypropyl aryl phosphates is linear, following the expression log kcatmax = (-0.85 +/- 0.02) sspKa + (12.8 +/- 0.4). The betalg value of -0.85 suggests that the catalyzed cleavage of the P-OAr/OR bond has progressed to about 45% in the transition state. The combined results are analyzed in terms of two possible processes involving either a concerted reaction leading to the cyclic phosphate 2 from which the thermodynamic mixture of 3/3a is formed or a stepwise one involving a transient phosphorane whose predominant fate is to eliminate methoxide and proceed to 2 rather than partitioning between 3, 3a, and 2.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja900525tDOI Listing

Publication Analysis

Top Keywords

thermodynamic mixture
16
cyclic phosphate
12
mixture 3/3a
12
phosphate
8
products 2-hydroxypropyl
8
time-dependent nmr
8
nmr spectra
8
mixture
8
phosphate subsequently
8
kinetic mixture
8

Similar Publications

Whey-Derived Antimicrobial Anionic Peptide Interaction with Model Membranes and Cells.

Langmuir

January 2025

Departamento de Química, Catedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.

The present work focuses on one of the possible target mechanisms of action of the anionic antimicrobial peptide β-lg derived from trypsin hydrolysis of β-lactoglobulin. After confirmation of bactericidal activity against a pathogenic Gram(+) strain and demonstration of the innocuousness on a eukaryotic cell line, we investigated the interaction of β-lg with monolayers and bilayers of dpPC and dpPC:dpPG as model membranes of eukaryotic and bacterial membranes, respectively. In monolayers, compared to zwitterionic dpPC, in the negatively charged dpPC-dpPG, β-lg injected into the subphase penetrated up to higher surface pressures and showed greater extents of penetration with increasing concentration in the subphase.

View Article and Find Full Text PDF

In the present study, the mixed micellization behavior of gemini surfactant-1, 5-bis (N-hexadecyl- N, N-dimethylammonium) pentane dibromide (G5) with non-ionic surfactant triton X-100 (TX-100) was investigated in the micellar phase by utilizing the conductometric technique. The deviation of ideal critical micelle concentration (cmc*) from experimental critical micelle concentration (cmc) has been estimated using well-known Clint's theory of mixed micelles. The regular solution approximation was used to determine the interaction parameter (β) and found to be negative.

View Article and Find Full Text PDF

This work aimed to extract silica from combination of rice husk (RH and Rice straw (RS) by optimizing the ash digesting process parameters with the aid of response surface methodology (RSM). The effects of three independent ash digestion process factors like sodium hydroxide concentration (1-3 M), temperature (60-120 °C) and time (1-3 h), for silica production from the mixture of rice husk (RH) and rice straw (RS) were studied. A quadratic model was used to correlate the interaction effects of the independent variables for maximum silica production at the optimum process parameters by employing central composite design (CCD) with RSM.

View Article and Find Full Text PDF

Drug-drug co-amorphous systems are a promising approach to improve the aqueous solubility of poorly water-soluble drugs. This study explores the combination of breviscapine (BRE) and matrine (MAT) form an amorphous salt, aiming to synergistically enhance the solubility and dissolution of BRE. In silico analysis of electrostatic potential and local ionization energy were conducted on BRE-MAT complex to predict the intermolecular interactions, and solvent-free energies were calculated using thermodynamic integration and density functional theory.

View Article and Find Full Text PDF

Effects of Nicotine on the Thermodynamics and Phase Coexistence of Pulmonary Surfactant Model Membranes.

Membranes (Basel)

December 2024

Laboratório de Ciências Físicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil.

Phase separation is essential for membrane function, and alterations in phase coexistence by membrane-interacting molecules, such as nicotine, can impair membrane stability. With the increasing use of e-cigarettes, concerns have arisen about the impact of nicotine on pulmonary surfactants. Here, we used differential scanning calorimetry (DSC), molecular dynamics (MD) simulations, and electron spin resonance (ESR) to examine nicotine's effect on the phase coexistence of two surfactant models: pure DPPC and a DPPC/POPC/POPG mixture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!