Crimp and bulk, important wool fiber properties, are thought to be related to differences in the protein composition of the orthocortex and paracortex. Fiber morphological studies have demonstrated that the paracortex has a higher proportion of matrix and cysteine than the orthocortex. While there is some evidence for the differential expression of genes between these cell types in the follicle, this has not been demonstrated satisfactorily in the mature fiber. Using proteolytic digestion of wool fibers, followed by ultrasonic disruption to obtain relatively pure fractions of both cell types, the KAP3 high sulfur protein family was found to be present in higher concentrations in the paracortex. This significant finding provides an explanation for the higher cysteine content reported in the paracortex. This represents an advance in our understanding of protein expression variation in the orthocortex and paracortex, and how this relates to key physical and mechanical properties of wool fibers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf803290hDOI Listing

Publication Analysis

Top Keywords

wool fibers
12
protein expression
8
orthocortex paracortex
8
cell types
8
paracortex
5
protein
4
expression orthocortical
4
orthocortical paracortical
4
paracortical cells
4
cells merino
4

Similar Publications

Wool quality is a crucial economic trait in Angora rabbits, closely linked to hair follicle (HF) growth and development. Therefore, understanding the molecular mechanisms of key genes regulating HF growth and wool fiber formation is essential. In the study, fine- and coarse-wool groups were identified based on HF morphological characteristics of Zhexi Angora rabbits.

View Article and Find Full Text PDF

Dyeing of synthetic fiber-based wool blended fabrics in supercritical carbon dioxide.

Sci Rep

December 2024

Dyeing, Printing and Textile Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, 33 EL Buhouth St., Dokki, 12622, Giza, Egypt.

Development of supercritical carbon dioxide (SC-CO) dyeing technology for natural fabrics and their blended fabrics is essential for the textile industry due to environmental and economic considerations. Wool (W), polyester (PET) and nylon (N) fabrics and their wool/polyester (W/PET) and wool/nylon (W/N) blended fabrics were dyed in SC-CO medium with a synthesized reactive disperse dye containing a vinylsulphone (VS) reactive group, which behaves as a disperse dye for synthetic fibers and a reactive dye for protein fibers. The SC-CO dyeing performance of all fabrics was investigated in terms of color strength, fixation, colorimetric and fastness measurements and compared with the conventional aqueous dyeing method.

View Article and Find Full Text PDF

Microbial disintegration of wool: An effective and sustainable approach for keratin extraction.

Int J Biol Macromol

December 2024

Biochemistry and Biotechnology Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Keratin is an important biopolymer used to develop biomaterials for biomedical and industrial applications. Traditional keratin extraction methods involve the removal of surface lipids using organic solvents, detergents, and energy-intensive processes that often compromise the purity of the extracted keratin. In the present study, wool fibers were microbially disintegrated to isolate cortical cells, achieving a maximum yield of 61.

View Article and Find Full Text PDF

The present study describes an innovative approach for the study of time-dependent alteration processes. It combines an advanced hyperspectral imaging (HSI) system, to collect visible reflectance and fluorescence spectral data sets sequentially, with a tailored multiblock data processing method. This enables the modeling of chemical degradation maps and the early, spatially resolved detection of dye alteration in textiles.

View Article and Find Full Text PDF

Mechanical Behaviour of Green Epoxy Composites Reinforced with Sheep and Dog Wool from Serra Da Estrela.

Polymers (Basel)

November 2024

Fiber Materials and Environmental Technologies Research Unit (FibEnTech-UBI), University of Beira Interior, Rua Marquês D'Ávila e Bolama, 6201-001 Covilhã, Portugal.

Environmental awareness has led industries and consumers to replace products derived from oil resources with products derived from natural sources. In the case of the composite materials industry, the replacement of synthetic fibres with natural fibres has increased in recent years. To study the influence that different types of natural fibres and different textile manufacturing techniques have on the mechanical properties of composites, bio-based epoxy matrix composites reinforced with different natural animal fibres were produced, some reinforced with sheep's wool and others with dog wool, which were later subjected to bending and tensile tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!