We describe a quasistatic method for mechanical characterization of tissue-mimicking material used in elastography. We demonstrate that it is possible to assess the elasticity modulus with a reasonable reproducibility using simple and easy tools and methods. Possessing a simple relevant technique with evaluated relative error to assess Young's modulus of these phantoms could deeply improve the quality of the research in the field of elastography. The method was tested and validated with four samples of polyvinyl alcohol (PVA) cryogel with different elasticity values corresponding to those of stiffer soft biological tissues. Young's moduli, varying from 70 to 180 kPa depending on the number of freeze-thaw cycles (two to five), were measured within strict measurement conditions and found to have a reproducibility varying from 4% to 8%. Relative error, estimated as the ratio between observed and reference values, varied from 16% to 32%. Besides, measurement stability over 4 months was evaluated. The method demonstrated good feasibility and acceptable reproducibility for mechanically characterizing and controlled over time phantoms used for validating new potential ultrasound imaging techniques in the field of elastography. Nevertheless, in this study, investigation was performed on gel possessing young's modulus values ranging from 80 to 215 kPa. Some tissue values of Young'modulus were reported to be lower, ranging from 0.6 to 28 kPa as liver or glandular values. Consequently, further validation of this static method for mechanical characterization of phantom gels should be performed using softer PVA cryogel.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.3065031DOI Listing

Publication Analysis

Top Keywords

pva cryogel
12
young's modulus
12
method mechanical
8
mechanical characterization
8
relative error
8
field elastography
8
values
5
investigation pva
4
young's
4
cryogel young's
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!