A (+)-gamma-lactamase was precipitated, cross-linked and the resulting solid crushed prior to immobilisation within a capillary column microreactor. The microreactor was subsequently used to study enzyme stability, activity, kinetics and substrate specificity. The thermophilic (+)-gamma-lactamase retained 100% of its initial activity at the assay temperature, 80 degrees C, for 6 h and retained 52% activity after 10 h, indicating the advantage of immobilisation. This high stability of the immobilised enzyme provided the advantage that it could be utilised to screen many compounds in the microreactor system. This advantage overcame the fact that the immobilisation process affected enzyme kinetics and activity, which was reduced (by 70%) compared to the free enzyme. In general, the enzyme displayed similar substrate specificity to that found in a previous study for the free enzyme; however, enhanced activity was seen towards one substrate, acrylamide. The system developed correlates well with the free enzyme in batch assay and indicates the suitability of the system for enzyme substrate screening, allowing a significant reduction in cost, due to the reduced amounts of enzyme, substrates and other assay constituents required.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biot.200800302 | DOI Listing |
Mol Cell Biochem
January 2025
Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Luigi Vanvitelli 32, 20133, Milan, Italy.
Neurodegenerative diseases (NDs) are caused by progressive neuronal death and cognitive decline. Epigallocatechin 3-gallate (EGCG) is a polyphenolic molecule in green tea as a neuroprotective agent. This review evaluates the therapeutic effects of EGCG and explores the molecular mechanisms that show its neuroprotective properties.
View Article and Find Full Text PDFInt J Dev Neurosci
February 2025
Department of Digestive and Nutrition, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China.
Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe neurological injury during infancy, often resulting in long-term cognitive deficits. This study aimed to investigate the neuroprotective effects of Edaravone (EDA), a free radical scavenger, and elucidate the potential role of brain-derived neurotrophic factor (BDNF) in mediating these effects in neonatal HIE rats. Using the Rice-Vannucci model, HIE was induced in neonatal rats, followed by immediate administration of EDA after the hypoxic-ischemic insult.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
Department of Pediatrics, Taihe County People's Hospital, Fuyang, Anhui, China.
Background: Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of brain disorders. Variants in the Rho-related BTB domain-containing 2 gene (RHOBTB2) can lead to DEE64, which is characterized by early-onset epilepsy, varying degrees of motor developmental delay and intellectual disability, microcephaly, and movement disorders. More than half of the variants are located at Arg483 and Arg511 within the BTB domain; however, the underlying mechanism of action of these hotspot variants remains unexplored.
View Article and Find Full Text PDFFront Plant Sci
January 2025
National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
Dihydroporphyrin iron (DH-Fe) is a novel plant growth regulator that plays significant roles in plant stress resistance. We found that is extremely sensitive to low temperature (LT) with a threshold of 25°C. To evaluate whether and how DH-Fe alleviates LT stress in , different DH-Fe concentrations (0, 10, 20, and 40 μg·L) were applied to estimate its effects on C and N metabolism and antioxidative capacity in grown under 20°C.
View Article and Find Full Text PDFTransl Lung Cancer Res
December 2024
Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China (UESTC), Chengdu, China.
Background: Osimertinib, a third-generation tyrosine kinase inhibitor (TKI), has been authorized for use in patients with epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC). This study aimed to evaluate the effectiveness and safety of neoadjuvant osimertinib in individuals with resectable locally advanced NSCLC harboring EGFR mutation.
Methods: Ten centers located in mainland China took part in a single-arm, real-world, multicenter retrospective study (registration number: ChiCTR2100049954).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!