Ultrafast spectroscopy by a sub-5 fs pulse laser was applied to the simultaneous study of electronic relaxation and vibrational dynamics in Ru(II)(TPP)(CO). The electronic lifetimes of (1)Q(x(1,0))(pi,pi*) and (1)Q(x(0,0))(pi,pi*) were determined to be 230 +/- 70 fs and 1150 +/- 260 fs, respectively. The spectrogram shows the time dependent changes in the vibrational spectrum associated with the spin state change from the Franck-Condon state in the excited singlet state to the triplet state via the curve crossing point between the singlet and triplet potential surfaces. The time constant of the intersystem crossing process was determined to be about 1.0 ps from observed electronic relaxation and vibrational dynamics reflecting the transition from the singlet to triplet electronic excited state.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic801477aDOI Listing

Publication Analysis

Top Keywords

intersystem crossing
8
electronic relaxation
8
relaxation vibrational
8
vibrational dynamics
8
singlet triplet
8
state
5
direct observation
4
observation molecular
4
molecular structural
4
structural change
4

Similar Publications

Article Synopsis
  • The study focuses on the development of new thermally activated delayed fluorescence (TADF) materials that enhance reverse intersystem crossing (RISC) to prevent triplet-triplet annihilation.
  • Five derivative molecules with different bridging atoms/groups were analyzed using computational modeling to understand their excited state behaviors in toluene.
  • A unique RISC mechanism was observed, predominantly involving T states instead of the usual transitions, which has implications for designing more efficient TADF compounds.
View Article and Find Full Text PDF

As the investigation of high efficiency thermally activated delayed fluorescence (TADF) materials become more mature, regulating the emission properties for single organic luminescence molecules has gained increasing interest recently. Herein, the donor-acceptor compounds F-AQ comprised of fluorene and anthraquinone is reported, and it exhibits a polymorphism with muti-color emission and TADF from high-level intersystem crossing (hRISC). The photodynamics and excited-state transient species were studied by femtosecond transient absorption (fs-TA) spectroscopy.

View Article and Find Full Text PDF

Sulfur-locked multiple resonance emitters for high performance orange-red/deep-red OLEDs.

Nat Commun

January 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are preferred for their high efficiency and high colour purity in organic light-emitting diodes (OLEDs). However, the design strategies of MR-TADF emitters in the red region are very limited. Herein, we propose a concept for a paradigm shift in orange-red/deep-red MR emitters by linking the outer phenyl groups in a classical MR framework through intramolecular sulfur (S) locks.

View Article and Find Full Text PDF

Ultra-low power-consumption OLEDs via phosphor-assisted thermally-activated-delayed-fluorescence-sensitized narrowband emission.

Nat Commun

January 2025

Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Department of Chemistry, Tsinghua University, Beijing, China.

The further success of OLED beyond conventional low-luminance display applications has been hampered by the low power efficiency (PE) at high luminance. Here, we demonstrate the strategic implementation of an exceptionally high-PE, high-luminance OLED using a phosphor-assisted thermally-activated-delayed-fluorescence (TADF)-sensitized narrowband emission. On the basis of a TADF sensitizing-host possessing a fast reverse intersystem crossing, an anti-aggregation-caused-quenching character and a good bipolar charge-transporting ability, this design achieves not only a 100% exciton radiative consumption with decay times mainly in the sub-microsecond regime to mitigate exciton annihilations for nearly roll-off-free external quantum efficiency, but also narrowband emission with both small energetic loss during energy transfer and resistive loss with increasing luminance.

View Article and Find Full Text PDF

Donor-acceptor BODIPY dyads, functionalized at the 2 and 6 positions with benzyl ester (BDP-DE) or carboxylic acid (BDP-DA) groups, were synthesized and characterized for their optoelectronic properties. The introduction of carbonyl groups increased the reduction potential of the BODIPY core by 0.15-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!