Pt(II) azido complexes [Pt(bpy)(N(3))(2)] (1), [Pt(phen)(N(3))(2)] (2) and trans-[Pt(N(3))(2)(py)(2)] (3) incorporating the bidentate diimine ligands 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen) or the monodentate pyridine (py) respectively, have been synthesised from their chlorido precursors and characterised by X-ray crystallography; complex 3 shows significant deviation from square-planar geometry (N(3)-Pt-N(3) angle 146.7 degrees ) as a result of steric congestion at the Pt centre. The novel Pt(IV) complexes trans, cis-[Pt(bpy)(OAc)(2)(N(3))(2)] (), trans, cis-[Pt(phen)(OAc)(2)(N(3))(2)] (), trans, trans, trans-[Pt(OAc)(2)(N(3))(2)(py)(2)] (), were obtained from via oxidation with H(2)O(2) in acetic acid followed by reaction of the intermediate with acetic anhydride. Complexes 4-6 exhibit interesting structural and photochemical properties that were studied by X-ray, NMR and UV-vis spectroscopy and TD-DFT (time-dependent density functional theory). These Pt(IV) complexes exhibit greater absorption at longer wavelengths (epsilon = 9756 M(-1) cm(-1) at 315 nm for 4 ; epsilon = 796 M(-1) cm(-1) at 352 nm for 5 ; epsilon = 16900 M(-1) cm(-1) at 307 nm for 6 , in aqueous solution) than previously reported Pt(IV) azide complexes, due to the presence of aromatic amines, and 4-6 undergo photoactivation with both UVA (365 nm) and visible green light (514 nm). The UV-vis spectra of complexes 4-6 were calculated using TD-DFT; the nature of the transitions contributing to the UV-vis bands provide insight into the mechanism of production of the observed photoproducts. The UV-vis spectra of 1-3 were also simulated by computational methods and comparison between Pt(II) and Pt(IV) electronic and structural properties allowed further elucidation of the photochemistry of 4-6.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933821PMC
http://dx.doi.org/10.1039/b820550gDOI Listing

Publication Analysis

Top Keywords

m-1 cm-1
12
ptiv complexes
8
complexes 4-6
8
uv-vis spectra
8
complexes
7
ptiv
5
synthesis characterisation
4
characterisation photochemistry
4
photochemistry ptiv
4
ptiv pyridyl
4

Similar Publications

The elevated glutathione (GSH) level and hypoxia in tumor cells are two key obstacles to realizing the high performance of phototherapy. Herein, the electron-donating rotors are introduced to wings of electron-withdrawing pyrrolopyrrole cyanine (PPCy) to form donor-acceptor-donor structure -aggregates for amplified superoxide radical generation, GSH depletion, and photothermal action for hypoxic cancer phototherapy to tackle this challenge. Three PPCy photosensitizers (PPCy-H, PPCy-Br, and PPCy-TPE) produce hydroxyl radicals (•OH) and superoxide radicals (O) in hypoxia tumors exclusively as well as excellent photothermal performances under light irradiation.

View Article and Find Full Text PDF

Stereoactive Lone-Pair Manipulation for High Thermoelectric Performance of GeSe-Based Compounds.

ACS Appl Mater Interfaces

January 2025

Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang Demonstration Zone, Xiangyang 441000, China.

Materials with high crystallographic symmetry are supposed to be good thermoelectrics because they have high valley degeneracy () and superb carrier mobility (μ). Binary GeSe crystallizes in a low-symmetry orthorhombic structure accompanying the stereoactive 4s lone pairs of Ge. Herein, we rationally modify GeSe into a high-symmetry rhombohedral structure by alloying with GeTe based on the valence-shell electron-pair repulsion theory.

View Article and Find Full Text PDF

Enhanced Circularly Polarized Green Luminescence Metrics from New Enantiopure Binary -Pyrazolonate-Tb Complexes.

Molecules

December 2024

Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, China.

Achieving superior circularly polarized luminescence brightness () is an important subject and continuous challenge for chiroptical materials. Herein, by applying a binary molecular design for the synthesis of chiral organo-Tb molecules, a novel pair of mononuclear chiral -pyrazolate-Tb enantiomers, [Tb(PMIP)(,-Ph-PyBox)] () and [Tb(PMIP)(,-Ph-PyBox)] (), have been synthesized and characterized. The three 1-phenyl-3-methyl-4-(isobutyryl)-5-pyrazolone () ligands play the role of efficient luminescence sensitizers and strong light-harvesting antennas, while the enantiopure 2,6-bis(4-phenyl-2-oxazolin-2-yl) pyridine ligand (/) is employed as the strong point-chiral inducer.

View Article and Find Full Text PDF

Unveiling the Centrosymmetric Effect in the Design of Narrowband Fluorescent Emitters: From Single to Double Difluoroboron Cores.

J Am Chem Soc

January 2025

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China.

Narrowband fluorescent emitters are receiving significant attention due to the great potential for creating ultrahigh-definition organic light-emitting diode displays (UHD-OLED). Unveiling innovative mechanisms to design new high-performance narrowband fluorescent emitters is a concerted endeavor in both academic and industrial circles. Theoretical calculations reveal that the centrosymmetric dianilido-bipyridine boron difluoride framework (-DAPBF) exhibits significantly reduced structural relaxation compared to previously reported asymmetric structures with monofluoroboron cores, creating new opportunities for the development of narrowband fluorescent emitters.

View Article and Find Full Text PDF

Tinoco A-Team Deferasirox (Def), an orally administered iron-chelating drug, has drawn significant interest in repurposing for anticancer application due to the elevated Fe demand by cancer cells. But there are also concerns about its severe off target health effects. Herein Cu(II) binding is studied as a potential off target interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!