In the present work we investigate the thermal diffusion behavior of three different binary mixtures with a thermal lens (TL) setup. In the setup used in this study we avoid the addition of a dye for systems, such as aqueous mixtures, with a weak absorption band at a wavelength of 980 nm. In some aqueous systems with a complex phase behavior the addition of dye significantly affects the apparent measured thermal diffusion properties. The studied systems are dimethylsulfoxide (DMSO) in water, the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate (EMIES) in butanol and a non-ionic surfactant hexaethylene glycol monododecyl ether (C(12)E(6)) in water. The Soret coefficients of the selected systems cover a range of two orders of magnitude. For DMSO in water with a very low Soret coefficient of the order of S(T) approximately 10(-3) K(-1) we find for a low DMSO content (c = 0.33) a reasonable agreement with previous measurements, while the weak thermal lens signal for the DMSO-rich mixture (c = 0.87) leads to 20% too large Soret coefficients with an uncertainty of more than 30%. Secondly we studied a liquid salt 1-ethyl-3-methylimidazolium ethylsulfate (EMIES) in butanol with a roughly ten times higher Soret coefficient of S(T) approximately 10(-2) K(-1). For this system we performed additional measurements with another experimental technique, the classical thermal diffusion forced Rayleigh scattering (TDFRS), which requires the addition of a small amount of dye to increase the absorption. In the entire investigated concentration range the results obtained with the TL and classical TDFRS technique agree within the error bars. As a third system we studied a non-ionic surfactant hexaethylene glycol monododecyl ether (C(12)E(6)) in water with a Soret coefficient of the order of S(T) approximately 10(-1) K(-1). For this system we find good agreement with previous measurements. We conclude that the TL technique is a reliable method for systems with a strong optical contrast and fairly large Soret coefficient of the order of S(T) approximately 10(-2) K(-1).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b810860a | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
Recently, ionic thermoelectric supercapacitors have gained attention because of their high open circuit voltages, even for ions that are redox inactive. As a source of open circuit voltage (electromotive force), an asymmetry in electric double layers developed by the adsorption of ions at the electrode surfaces kept at different temperatures has previously been proposed. As another source, the Eastman entropy of transfer, which is related to the Soret coefficient, has been considered.
View Article and Find Full Text PDFPLoS One
November 2024
College of science, Inner Mongolia University of Technology, Hohhot, China.
The growth of spherical crystals in binary alloy melts with thermal diffusion effects under oscillatory flow is investigated analytically. Using the multiple scale method, we derive approximate analytical solutions for both the crystal interface growth rate and the solute concentration. Our results demonstrate that the Soret effect significantly influences both the solute concentration near the crystal interface and the crystal growth rate.
View Article and Find Full Text PDFACS Omega
October 2024
Department of Chemistry, Molecular Sciences Research Hub Imperial College, Imperial College London, London W12 0BZ, U.K.
Thermal gradients impart thermophoretic forces on colloidal particles, pushing colloids toward cold or hot regions, a phenomenon called thermophoresis. Current theoretical approaches relate the Soret coefficient to local changes in the interfacial tension around the colloid, which lead to fluid flow around the colloid surface. The Kapitza resistance, a key variable in the description of interfacial heat transport, is an experimentally accessible property that modifies interfacial thermal fields.
View Article and Find Full Text PDFJ Chromatogr A
October 2024
State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China.
The Soret effect is a significant factor in various scenarios, with thermodiffusion in binary systems serving as a common method for the study. Most research focuses rarely on the distribution characteristics of components in diffusion systems; and Soret coefficients in the porous media could not be obtained by typical methods based on the thermodiffusion column, which are particularly important in the field of oil and gas development. Moreover, experiments on ground conditions have struggled to determine the Soret coefficient accurately due to the convective effect caused by gravity differentiation.
View Article and Find Full Text PDFHeliyon
August 2024
Department of Mechanical Engineering, Babol Noshirvani University of Technology, P.O. Box 484, Babol, Iran.
This study employs the Hybrid Analytical-Numerical (HAN) method to investigate steady two-dimensional magnetohydrodynamic (MHD) nanofluid flow over a permeable wedge. Analyzing hyperbolic tangent nanofluid flow, the governing time-independent partial differential equations (PDEs) for continuity, momentum, energy, and concentration transform into a set of nonlinear third-order coupled ordinary differential equations (ODEs) through similarity transformations. These ODEs encompass critical parameters such as Lewis and Prandtl numbers, Brownian diffusion, Weissenberg number, thermophoresis, Dufour and Soret numbers, magnetic field strength, thermal radiation, power law index, and medium permeability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!