AI Article Synopsis

  • The pore region of cyclic nucleotide-gated (CNG) channels functions as the gate, requiring communication between the cyclic nucleotide-binding (CNB) domain and the pore walls for proper gating.
  • Mutations in key residues (E363, L356, T355, F380) disrupt channel functions, leading to desensitization under constant cGMP, while structural changes in the channel's outer vestibule are observed.
  • The interactions between Leu356 and Phe380, as well as Glu363 and Thr355, are crucial for maintaining normal gating processes, highlighting their role in the coupling between the CNB domain and the channel's pore.

Article Abstract

The pore region of cyclic nucleotide-gated (CNG) channels acts as the channel gate. Therefore, events occurring in the cyclic nucleotide-binding (CNB) domain must be coupled to the movements of the pore walls. When Glu363 in the pore region, Leu356 and Thr355 in the P helix, and Phe380 in the upper portion of the S6 helix are mutated into an alanine, gating is impaired: mutant channels E363A, L356A, T355A, and F380A desensitize in the presence of a constant cGMP concentration, contrary to what can be observed in wild-type (WT) CNGA1 channels. Similarly to C-type inactivation of K(+) channels, desensitization in these mutant channels is associated with rearrangements of residues in the outer vestibule. In the desensitized state, Thr364 residues in different subunits become closer and Pro366 becomes more accessible to extracellular reagents. Desensitization is also observed in the mutant channel L356C, but not in the double-mutant channel L356C+F380C. Mutant channels L356F and F380K did not express, but cGMP-gated currents with a normal gating were observed in the double-mutant channels L356F+F380L and L356D+F380K. Experiments with tandem constructs with L356C, F380C, and L356C+F380C and WT channels indicate that the interaction between Leu356 and Phe380 is within the same subunit. These results show that Leu356 forms a hydrophobic interaction with Phe380, coupling the P helix with S6, whereas Glu363 could interact with Thr355, coupling the pore wall to the P helix. These interactions are essential for normal gating and underlie the transduction between the CNB domain and the pore.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699107PMC
http://dx.doi.org/10.1085/jgp.200810157DOI Listing

Publication Analysis

Top Keywords

normal gating
12
mutant channels
12
channels
9
cnga1 channels
8
interactions essential
8
essential normal
8
pore region
8
cnb domain
8
pore
5
analysis desensitizing
4

Similar Publications

The size of viral genomes is limited, thus the majority of encoded proteins possess multiple functions. The main function of tobamoviral movement protein (MP) is to perform plasmodesmata gating and mediate intercellular transport of the viral RNA. MP is a remarkable example of a protein that, in addition to the initially discovered and most obvious function, carries out numerous activities that are important both for the manifestation of its key function and for successful and productive infection in general.

View Article and Find Full Text PDF

PCP-B peptides and CrRLK1L receptor kinases control pollination via pH gating of aquaporins in Arabidopsis.

Dev Cell

January 2025

School of Life Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, Shanghai 202162, China. Electronic address:

During pollen-stigma interaction, pollen coat protein B-class peptides (PCP-Bs) compete with stigmatic rapid alkalinization factor (RALF) for interaction with FERONIA/ANJEA receptor kinases (FER/ANJ), stimulating pollen hydration and germination. However, the molecular mechanism underlying PCP-Bs-induced, FER/ANJ-regulated compatible responses remains largely unknown. Through PCP-Bγ-induced phosphoproteomic analysis, we characterized a series of pollination-related signaling pathways regulated by FER/ANJ.

View Article and Find Full Text PDF

A well-balanced ion channel trafficking machinery is paramount for the normal electromechanical function of the heart. Ion channel variants and many drugs can alter the cardiac action potential and lead to arrhythmias by interfering with mechanisms like ion channel synthesis, trafficking, gating, permeation, and recycling. A case in point is the Long QT syndrome (LQTS), a highly arrhythmogenic disease characterized by an abnormally prolonged QT interval on ECG produced by variants and drugs that interfere with the action potential.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder with an irreversible progression. Currently, it is diagnosed using invasive and costly methods, such as cerebrospinal fluid analysis, neuroimaging, and neuropsychological assessments. Recent studies indicate that certain changes in language ability can predict early cognitive decline, highlighting the potential of speech analysis in AD recognition.

View Article and Find Full Text PDF

Flexibility has been a key selling point in the development of carbon-based electronics and sensors with the promise of further development into wearable devices. Semiconducting single-walled carbon nanotubes (SWNTs) lend themselves well to applications requiring flexibility while achieving high-performance. Our previous work has demonstrated a tri-layer polymer dielectric composed of poly(lactic acid) (PLA), poly(vinyl alcohol) with cellulose nanocrystals (PVAc), and toluene diisocyanate-terminated poly(caprolactone) (TPCL), yielding an environmentally benign and solution-processable n-type thin-film transistor (TFT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!