A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Caspase-mediated cleavage of beta-catenin precedes drug-induced apoptosis in resistant cancer cells. | LitMetric

Caspase-mediated cleavage of beta-catenin precedes drug-induced apoptosis in resistant cancer cells.

J Biol Chem

Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition Loyola University, Chicago, Maywood, Illinois 60153; Department of Pharmacology and Experimental Therapeutics, Loyola University, Chicago, Maywood, Illinois 60153; Hines Veterans Affairs Medical Center, Hines, Illinois 60141. Electronic address:

Published: May 2009

A delicate balance between cell death and survival pathways maintains normal physiology, which is altered in many cancers, shifting the balance toward increased survival. Several studies have established a close connection between the Wnt/beta-catenin pathway and tumorigenesis, aberrant activation of which might contribute toward increased cancer cell growth and survival. Extensive research is underway to identify therapeutic agents that can induce apoptosis specifically in cancer cells with minimal collateral damage to normal cells. Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis specifically in tumor cells, many cancer cells develop resistance, which can be overcome by combinatorial treatment with other agents: for example, peroxisome proliferator-activated receptor gamma (PPARgamma) ligands. To identify the molecular target mediating combinatorial drug-induced apoptosis, we focused on beta-catenin, a protein implicated in oncogenesis. Our results show that co-treatment of TRAIL-resistant cancer cells with TRAIL and the PPARgamma ligand troglitazone leads to a reduction of beta-catenin expression, coinciding with maximal apoptosis. Modulation of beta-catenin levels via ectopic overexpression or small interference RNA-mediated gene silencing modulates drug-induced apoptosis, indicating involvement of beta-catenin in regulating this pathway. More in-depth studies indicated a post-translational mechanism, independent of glycogen synthase kinase-3beta activity regulating beta-catenin expression following combinatorial drug treatment. Furthermore, TRAIL- and troglitazone-induced apoptosis was preceded by a cleavage of beta-catenin, which was complete in a fully apoptotic population, and was mediated by caspases-3 and -8. These results demonstrate beta-catenin as a promising new target of drug-induced apoptosis, which can be targeted to sensitize apoptosis-resistant cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2679459PMC
http://dx.doi.org/10.1074/jbc.M900248200DOI Listing

Publication Analysis

Top Keywords

cancer cells
20
drug-induced apoptosis
16
beta-catenin
8
cleavage beta-catenin
8
apoptosis
8
induce apoptosis
8
beta-catenin expression
8
cells
7
cancer
6
caspase-mediated cleavage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!