Linoleate (10R)-dioxygenase (10R-DOX) of Aspergillus fumigatus was cloned and expressed in insect cells. Recombinant 10R-DOX oxidized 18:2n-6 to (10R)-hydroperoxy-8(E),12(Z)-octadecadienoic acid (10R-HPODE; approximately 90%), (8R)-hydroperoxylinoleic acid (8R-HPODE; approximately 10%), and small amounts of 12S(13R)-epoxy-(10R)-hydroxy-(8E)-octadecenoic acid. We investigated the oxygenation of 18:2n-6 at C-10 and C-8 by site-directed mutagenesis of 10R-DOX and 7,8-linoleate diol synthase (7,8-LDS), which forms approximately 98% 8R-HPODE and approximately 2% 10R-HPODE. The 10R-DOX and 7,8-LDS sequences differ in homologous positions of the presumed dioxygenation sites (Leu-384/Val-330 and Val-388/Leu-334, respectively) and at the distal site of the heme (Leu-306/Val-256). Leu-384/Val-330 influenced oxygenation, as L384V and L384A of 10R-DOX elevated the biosynthesis of 8-HPODE to 22 and 54%, respectively, as measured by liquid chromatography-tandem mass spectrometry analysis. The stereospecificity was also decreased, as L384A formed the R and S isomers of 10-HPODE and 8-HPODE in a 3:2 ratio. Residues in this position also influenced oxygenation by 7,8-LDS, as its V330L mutant augmented the formation of 10R-HPODE 3-fold. Replacement of Val-388 in 10R-DOX with leucine and phenylalanine increased the formation of 8R-HPODE to 16 and 36%, respectively, whereas L334V of 7,8-LDS was inactive. Mutation of Leu-306 with valine or alanine had little influence on the epoxyalcohol synthase activity. Our results suggest that Leu-384 and Val-388 of 10R-DOX control oxygenation of 18:2n-6 at C-10 and C-8, respectively. The two homologous positions of prostaglandin H synthase-1, Val-349 and Ser-353, are also critical for the position and stereospecificity of the cyclooxygenase reaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2679477PMC
http://dx.doi.org/10.1074/jbc.M808665200DOI Listing

Publication Analysis

Top Keywords

site-directed mutagenesis
8
epoxyalcohol synthase
8
synthase activity
8
oxygenation 182n-6
8
182n-6 c-10
8
c-10 c-8
8
homologous positions
8
influenced oxygenation
8
val-388 10r-dox
8
10r-dox
7

Similar Publications

In plasma, the zymogens factor XII (FXII) and prekallikrein reciprocally convert each other to the proteases FXIIa and plasma kallikrein (PKa). PKa cleaves high-molecular-weight kininogen (HK) to release bradykinin, which contributes to regulation of blood vessel tone and permeability. Plasma FXII is normally in a "closed" conformation that limits activation by PKa.

View Article and Find Full Text PDF

Characterization of novel mutations involved in the development of resistance to colistin in Salmonella isolates from retail pork in Shanghai, China.

Int J Food Microbiol

February 2025

MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Salmonella is an important foodborne pathogen that poses a significant threat to food safety. This study aims to assess the prevalence, genomic features, and colistin-resistant mechanisms of Salmonella isolates collected from 118 retail pork samples from January 2021 to January 2022 in Shanghai, China. Overall, 46 (39.

View Article and Find Full Text PDF

Molecular mechanism of interaction between SHORT VEGETATIVE PHASE and APETALA1 in Arabidopsis thaliana.

Plant Physiol Biochem

January 2025

Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China. Electronic address:

Point mutations were introduced into specific leucine (L) amino acids within the K domain of SHORT VEGETATIVE PHASE (SVP), and their effects on the SVP-AP1 interaction were assessed. Yeast two-hybrid experiments and β-galactosidase activity assays demonstrated that SVP maintained its capacity to interact with APETALA1 (AP1) despite point mutations at the 108th, 116th, 119th, and 127th leucine residues, where leucine was substituted with alanine (A). However, the mutation of the leucine residue at position 124 to alanine abolished the interaction between SVP and AP1 regardless of whether the mutation was singular or combined with others.

View Article and Find Full Text PDF

Targeting membrane integrity and imidazoleglycerol-phosphate dehydratase: Sanguinarine multifaceted approach against Staphylococcus aureus biofilms.

Phytomedicine

January 2025

Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China. Electronic address:

Background: Staphylococcus aureus is an opportunistic pathogen capable of readily forming biofilms, which can result in life-threatening infections involving different organs. Sanguinarine are benzo[c]phenanthridine alkaloids extracted from the Sanguinaria canadensis L. (Papaveraceae), which have a wide range of biological activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!