A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HIV-1 reverse transcriptase can simultaneously engage its DNA/RNA substrate at both DNA polymerase and RNase H active sites: implications for RNase H inhibition. | LitMetric

Reverse transcriptase of the human immunodeficiency virus possesses DNA polymerase and ribonuclease (RNase) H activities. Although the nucleic acid binding cleft separating these domains can accommodate structurally diverse duplexes, it is currently unknown whether regular DNA/RNA hybrids can simultaneously contact both active sites. In this study, we demonstrate that ligands capable of trapping the 3'-end of the primer at the polymerase active site affect the specificity of RNase H cleavage without altering the efficiency of the reaction. Experiments under single-turnover conditions reveal that complexes with a bound nucleotide substrate show specific RNase H cleavage at template position -18, while complexes with the pyrophosphate analogue foscarnet show a specific cut at position -19. This pattern is indicative of post-translocated and pre-translocated conformations. The data are inconsistent with models postulating that the substrate toggles between both active sites, such that the primer 3'-terminus is disengaged from the polymerase active site when the template is in contact with the RNase H active site. In contrast, our findings provide strong evidence to suggest that the nucleic acid substrate can engage both active sites at the same time. As a consequence, the bound and intact DNA/RNA hybrid can restrict access of RNase H active site inhibitors. We have mapped the binding site of the recently discovered inhibitor beta-thujaplicinol between the RNase H active site and Y501 of the RNase H primer grip, and have shown that the inhibitor is unable to bind to a preformed reverse transcriptase-DNA/RNA complex. In conclusion, the bound nucleic acid substrate and in turn, active DNA synthesis can represent an obstacle to RNase H inhibition with compounds that bind to the RNase H active site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4285699PMC
http://dx.doi.org/10.1016/j.jmb.2009.03.025DOI Listing

Publication Analysis

Top Keywords

active site
24
rnase active
20
active sites
16
nucleic acid
12
rnase
11
active
11
reverse transcriptase
8
dna polymerase
8
rnase inhibition
8
polymerase active
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!