The kinetic mechanism of the single-stranded DNA (ssDNA) recognition by the RepA hexameric replicative helicase of the plasmid RSF1010 and the nature of formed intermediates, in the presence of the ATP nonhydrolyzable analog, beta,gamma-imidoadenosine-5'-triphosphate (AMP-PNP), have been examined, using the fluorescence intensity and anisotropy stopped-flow and analytical ultracentrifugation methods. Association of the RepA hexamer with the ssDNA oligomers that engage the total DNA-binding site and exclusively the strong DNA-binding subsite is a minimum four-step mechanism [formula: see text]. Extreme stability of the RepA hexamer precludes any disintegration of its structure, and the sequential character of the mechanism indicates that the enzyme exists in a predominantly single conformation prior to the association with the nucleic acid. Moreover, the hexameric helicase possesses a DNA-binding site located outside its cross channel. The reaction steps have dramatically different dynamics, with rate constants differing by 2-3 orders of magnitude. Such behavior indicates a very diverse nature of the observed transitions, which comprises binding steps and large conformational transitions of the helicase, including local opening of the hexameric structure. Steady-state fluorescence anisotropies of intermediates indicate that the entry of the DNA into the cross channel is initiated from the 5' end of the bound nucleic acid. The global structure of the tertiary complex RepA-ssDNA-AMP-PNP is very different from the structure of the binary complex RepA-AMP-PNP, indicating that, in equilibrium, the RepA hexamer-ssDNA-AMP-PNP complex exists as a mixture of partially open states.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3070410 | PMC |
http://dx.doi.org/10.1016/j.jmb.2009.03.027 | DOI Listing |
ACS Nano
January 2025
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States.
Most traditional optical biosensors operate through molecular recognition, where ligand binding causes conformational changes that lead to optical perturbations in the emitting motif. Optical sensors developed from single-stranded DNA-functionalized single-walled carbon nanotubes (ssDNA-SWCNTs) have started to make useful contributions to biological research. However, the mechanisms underlying their function have remained poorly understood.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
CRISPR/Cas 12a system based nucleic acid and non-nucleic acid targets detection faces two challenges including (1) multiple crRNAs are needed for multiple biomarkers detection and (2) insufficient sensitivity resulted from photobleaching of fluorescent dyes and the low kinetic cleavage rate for a traditional single-strand (ssDNA) reporter. To address these limitations, we developed a programmable DNA nanoswitch (NS)-regulated plasmonic CRISPR/Cas12a-gold nanostars (Au NSTs) reporter platform for detection of nucleic acid and non-nucleic acid biomarkers with the assistance of the spatial confinement effect. Through simply programming the target recognition sequence in NS, only one crRNA is required to detect both nucleic acid and non-nucleic acid biomarkers.
View Article and Find Full Text PDFChem Sci
December 2024
School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
The development of universal electrochemical sensing platforms with high sensitivity and specificity is of great significance for advancing practical disease diagnostic methods and devices. Exploring the structural properties of electrode materials and their interaction with biomolecules is essential to developing novel and distinctive analytical approaches. Here, we innovatively investigated the effect of DNA length and configuration on DNA molecule transfer into the nanostructure of a nanoporous gold (NPG) electrode.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
Background: Localized surface plasmon resonance (LSPR) sensor has drawn continuous attention to application of the detection of antibody, protein, virus, and bacteria. However, natural recognition molecules, such as antibody, which possess some properties, including low thermal stability, complicated operation and high price, uncontrollability of length and size and a tendency to accumulate easily on the surface of chip to reduce the sensitive of method. Furthermore, common blocking agents are not suitable for development of novel biosensors.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT, 84322, USA; Department of Chemistry, University of Louisiana at Lafayette, 300 East St. Mary Blvd, Lafayette, LA, 70504, USA. Electronic address:
A rapid and accurate biosensor for detecting disease biomarkers at point-of-care is essential for early disease diagnosis and preventing pandemics. CRISPR-Cas12a is a promising recognition element for DNA biosensors due to its programmability, specificity, and deoxyribonuclease activity initiated in the presence of a biomarker. The current electrochemical CRISPR-Cas12a-based biosensors utilize the single-stranded DNA (ssDNA) self-assembled on an electrode surface and covalently modified with the redox indicator, usually methylene blue (MB).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!