Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An automated protein structure prediction algorithm, pro-sp3-Threading/ASSEmbly/Refinement (TASSER), is described and benchmarked. Structural templates are identified using five different scoring functions derived from the previously developed threading methods PROSPECTOR_3 and SP(3). Top templates identified by each scoring function are combined to derive contact and distant restraints for subsequent model refinement by short TASSER simulations. For Medium/Hard targets (those with moderate to poor quality templates and/or alignments), alternative template alignments are also generated by parametric alignment and the top models selected by TASSER-QA are included in the contact and distance restraint derivation. Then, multiple short TASSER simulations are used to generate an ensemble of full-length models. Subsequently, the top models are selected from the ensemble by TASSER-QA and used to derive TASSER contacts and distant restraints for another round of full TASSER refinement. The final models are selected from both rounds of TASSER simulations by TASSER-QA. We compare pro-sp3-TASSER with our previously developed MetaTASSER method (enhanced with chunk-TASSER for Medium/Hard targets) on a representative test data set of 723 proteins <250 residues in length. For the 348 proteins classified as easy targets (those templates with good alignments and global structure similarity to the target), the cumulative TM-score of the best of top five models by pro-sp3-TASSER shows a 2.1% improvement over MetaTASSER. For the 155/220 medium/hard targets, the improvements in TM-score are 2.8% and 2.2%, respectively. All improvements are statistically significant. More importantly, the number of foldable targets (those having models whose TM-score to native >0.4 in the top five clusters) increases from 472 to 497 for all targets, and the relative increases for medium and hard targets are 10% and 15%, respectively. A server that implements the above algorithm is available at http://cssb.biology.gatech.edu/skolnick/webservice/pro-sp3-TASSER/. The source code is also available upon request.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717286 | PMC |
http://dx.doi.org/10.1016/j.bpj.2008.12.3898 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!