This paper studied the phenotypic plasticity of Agriophyllum squarrosum under effects of soil nutrient and moisture contents and population density. The results showed that with the increase of soil nutrient content, the root/shoot ratio of A. squarrosum was decreased from 0.135 to 0.073. However, soil moisture content and population density had less effect on the root/shoot ratio. The plasticity of reproductive allocation of A. squarrosum as responding to the changes of soil nutrient and moisture contents was a "real plasticity", and the allocation was negatively correlated with soil nutrient content but positively correlated with soil moisture content. When soil nutrient content was high or moisture content was low, the reproductive allocation of A. squarrosum changed larger with plant size. Population density had no effects on the reproductive allocation, while plant size conditioned the allocation. Among the three test affecting factors, soil nutrient content had the greatest effects on the morphological characters and biomass of A. squarrosum.
Download full-text PDF |
Source |
---|
PeerJ
January 2025
Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China.
Grazing can alter the physicochemical properties of soil and quickly influence the composition of microbial communities. However, the effects of grazing intensity on fungal community composition in different soil depth remain unclear. On the Inner Mongolia Plateau, we studied the effects of grazing intensity treatments including no grazing (NG), light grazing (LG), moderate grazing (MG), heavy grazing (HG), and over grazing (OG) on the physicochemical properties and fungal community composition of surface (0-20 cm) and subsurface (20-40 cm) soil layers.
View Article and Find Full Text PDFPlant Commun
January 2025
Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea. Electronic address:
Roots absorb water and nutrients from the soil, support the plant's aboveground organs, and detect environmental changes, making them crucial targets for improving crop productivity. Roots are particularly sensitive to soil salinity, a major abiotic stress that poses a serious threat to global agriculture. In response to salt stress, plants suppress root meristem size, thus reducing root growth; however, the mechanisms underlying this growth restriction remain unclear.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, 39762, United States. Electronic address:
Harmful algal blooms (HABs) are increasingly a global concern and the issue of all fifty states in the U.S as it poses a threat to human health and aquatic ecosystem. This study aimed to investigate the relationship of HABs with streamflow and water quality parameters and assess the hydrology-based potential future HABs in the Ohio River Basin at Ironton (ORBI) using the Soil and Water Assessment Tool (SWAT).
View Article and Find Full Text PDFEnviron Int
January 2025
Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China. Electronic address:
Enzymatic proteolysis is the key process to produce bioavailable nitrogen in natural terrestrial and aquatic ecosystems for microorganisms and plants. However, little is known on how protein degradation is influenced by organic contaminants. As we known, the overuse of organophosphate esters (OPEs) has caused serious pollution in soil, water, and sediment.
View Article and Find Full Text PDFSci Total Environ
January 2025
University of São Paulo, Luiz de Queiroz College of Agriculture, Department of Soil Science, Brazil.
Phosphorus (P) movement in soils is influenced by flow velocities, diffusion rates, and several soil characteristics and properties. In acidic soils, P is tightly bound to soil particles, reducing its availability to plants. Organomineral fertilizers combine organic matter with mineral nutrients, enhancing P fertilization efficiency, and reducing environmental impacts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!