Bromoxynil degradation in a Mississippi silt loam soil.

Pest Manag Sci

USDA-Agricultural Research Service, Southern Weed Science Research Unit, Stoneville, MS 38776, USA.

Published: June 2009

Background: The objectives of these laboratory experiments were: (1) to assess bromoxynil sorption, mineralization, bound residue formation and extractable residue persistence in a Dundee silt loam collected from 0-2 cm and 2-10 cm depths under continuous conventional tillage and no-tillage; (2) to assess the effects of autoclaving on bromoxynil mineralization and bound residue formation; (3) to determine the partitioning of non-extractable residues; and (4) to ascertain the effects of bromoxynil concentration on extractable and bound residues and metabolite formation.

Results: Bromoxynil K(d) values ranged from 0.7 to 1.4 L kg(-1) and were positively correlated with soil organic carbon. Cumulative mineralization (38.5% +/- 1.5), bound residue formation (46.5% +/- 0.5) and persistence of extractable residues (T(1/2) < 1 day) in non-autoclaved soils were independent of tillage and depth. Autoclaving decreased mineralization and bound residue formation 257-fold and 6.0-fold respectively. Bromoxynil persistence in soil was rate independent (T(1/2) < 1 day), and the majority of non-extractable residues (87%) were associated with the humic acid fraction of soil organic matter.

Conclusions: Irrespective of tillage or depth, bromoxynil half-life in native soil is less than 1 day owing to rapid incorporation of the herbicide into non-extractable residues. Bound residue formation is governed principally by biochemical metabolite formation and primarily associated with soil humic acids that are moderately bioavailable for mineralization. These data indicate that the risk of off-site transport of bromoxynil residues is low owing to rapid incorporation into non-extractable residues.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.1730DOI Listing

Publication Analysis

Top Keywords

bound residue
20
residue formation
20
non-extractable residues
16
mineralization bound
12
bromoxynil
8
silt loam
8
soil organic
8
t1/2 day
8
tillage depth
8
rapid incorporation
8

Similar Publications

In plants, sugar will eventually be exported transporters (SWEETs) facilitate the translocation of mono- and disaccharides across membranes and play a critical role in modulating responses to gibberellin (GA3), a key growth hormone. However, the dynamic mechanisms underlying sucrose and GA3 binding and transport remain elusive. Here, we employed microsecond-scale molecular dynamics (MD) simulations to investigate the influence of sucrose and GA3 binding on SWEET13 transporter motions.

View Article and Find Full Text PDF

Dynamic PRC1-CBX8 stabilizes a porous structure of chromatin condensates.

Nat Struct Mol Biol

January 2025

Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.

The compaction of chromatin is a prevalent paradigm in gene repression. Chromatin compaction is commonly thought to repress transcription by restricting chromatin accessibility. However, the spatial organization and dynamics of chromatin compacted by gene-repressing factors are unknown.

View Article and Find Full Text PDF

Structural basis of phosphate export by human XPR1.

Nat Commun

January 2025

Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China.

Phosphorus in crucial for all living organisms. In vertebrate, cellular phosphate homeostasis is partly controlled by XPR1, a poorly characterized inositol pyrophosphate-dependent phosphate exporter. Here, we report the cryo-EM structure of human XPR1, which forms a loose dimer with 10 transmembrane helices (TM) in each protomer.

View Article and Find Full Text PDF

Competitive displacement of lipoprotein lipase from heparan sulfate is orchestrated by a disordered acidic cluster in GPIHBP1.

J Lipid Res

January 2025

Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Movement of lipoprotein lipase (LPL) from myocytes or adipocytes to the capillary lumen is essential for intravascular lipolysis and plasma triglyceride homeostasis-low LPL activity in the capillary lumen causes hypertriglyceridemia. The trans-endothelial transport of LPL depends on ionic interactions with GPIHBP1's intrinsically disordered N-terminal tail, which harbors two acidic clusters at positions 5-12 and 19-30. This polyanionic tail provides a molecular switch that controls LPL detachment from heparan sulfate proteoglycans (HSPGs) by competitive displacement.

View Article and Find Full Text PDF

Mg-dependent mechanism of environmental versatility in a multidrug efflux pump.

Structure

January 2025

Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, SE1 1DB, UK; School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK. Electronic address:

Tripartite resistance nodulation and cell division multidrug efflux pumps span the periplasm and are major drivers of multidrug resistance among gram-negative bacteria. Cations, such as Mg, become concentrated within the periplasm and, in contrast to the cytoplasm, its pH is sensitive to conditions outside the cell. Here, we reveal an interplay between Mg and pH in modulating the structural dynamics of the periplasmic adapter protein, AcrA, and its function within the prototypical AcrAB-TolC multidrug pump from Escherichia coli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!