To investigate the vaccine potential of multi-epitope vaccines against toxoplasmosis, a multi-epitope DNA vaccine, eukaryotic plasmid pcDNA3.1/T-ME expressing six antigen segments (SAG1(238-256), SAG1(281-320), GRA1(170-193), GRA4(331-345), GRA4(229-245), and GRA2(171-185)) of Toxoplasma gondii was constructed. We investigated the efficacy of pcDNA3.1/T-ME with or without co-administration of a CpG-oligodeoxynucleotide (CpG-ODN) as an adjuvant to protect mice (BALB/c and C57BL/6) against toxoplasmosis. High survival rates were observed in mice immunized with pcDNA3.1/T-ME when challenged with T. gondii RH strain. Lymphocyte proliferation assays, cytokine, and antibody determinations show that mice immunized with pcDNA3.1/T-ME produced stronger humoral and Th1-type cellular immune responses compared to untreated mice or those immunized with empty plasmids. However, co-immunization with CpG-ODN resulted in impaired immune responses. Our data demonstrates that multi-epitope DNA vaccination is a potential strategy for the control of toxoplasmosis and paves the way for further investigations into producing a multi-epitope anti-T. gondii DNA vaccine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00436-009-1393-1 | DOI Listing |
Mol Biotechnol
January 2025
Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.
The etiological agent for the coronavirus disease 2019 (COVID-19), the SARS-CoV-2, caused a global pandemic. Although mRNA, viral-vectored, DNA, and recombinant protein vaccine candidates were effective against the SARS-CoV-2 Wuhan strain, the emergence of SARS-CoV-2 variants of concern (VOCs) reduced the protective efficacies of these vaccines. This necessitates the need for effective and accelerated vaccine development against mutated VOCs.
View Article and Find Full Text PDFBioinform Biol Insights
December 2024
Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa.
Objective: Babesiosis is a significant haemoparasitic infection caused by apicomplexan parasites of the genus . This infection has continuously threatened cattle farmers owing to its devastating effects on productivity and severe economic implications. Failure to curb the increase of the infection has been attributed to largely ineffective vaccines.
View Article and Find Full Text PDFRes Pharm Sci
October 2024
School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia.
Background And Purpose: Massive vaccine distribution is a crucial step to prevent the spread of SARS-CoV2 as the causative agent of COVID-19. This research aimed to design the multi-epitope self-amplifying mRNA (saRNA) vaccine from the spike and nucleocapsid proteins of SARS-CoV2.
Experimental Approach: Commonly distributed constructions class I and II alleles of the Indonesian population were used to determine peptide sequences that trigger this population's high specificity T-cell response.
FASEB J
December 2024
Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Since May 2022, the global spread of monkeypox virus (MPXV) has presented a significant threat to public health. Despite this, there are limited preventive measures available. In this study, different computational tools were employed to design a multi-epitope vaccine targeting MPXV.
View Article and Find Full Text PDFPLoS One
December 2024
School of Life Science and Technology, Institut Teknologi Bandung, Bandung, West Java, Indonesia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!