A study of the cross-linking of beta-galactosidase on magnetic beads is reported here. The magnetic beads were prepared from artemisia seed gum, chitosan, and magnetic fluid in the presence of a cross-linking regent (i.e., glutaraldehyde). The reactive aldehyde groups of the magnetic beads allowed the reaction of the amino groups of the enzymes. The animated magnetic beads were used for the covalent immobilization of beta-galactosidase. The effect of various preparation conditions on the activity of the immobilized beta-galactosidase, such as immobilizing time, amount of enzyme, and the concentration of glutaraldehyde, were investigated. The influence of pH and temperature on the activity and the stability of the enzyme, both free and immobilized, have been studied. And o-nitrophenyl-beta-D: -galactopyranoside (ONPG) was chosen as a substrate. The beta-galactosidase immobilized on the magnetic beads resulted in an increase in enzyme stability. Optimum operational temperature for immobilized enzyme was 10 degrees Celsius higher than that of free enzyme and was significantly broader.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-009-8600-5 | DOI Listing |
J Proteome Res
January 2025
Advanced Research Support Center, Ehime University, Ehime 791-0295, Japan.
Precise prefractionation of proteome samples is a potent method for realizing in-depth analysis in top-down proteomics. PEPPI-MS (Passively Eluting Proteins from Polyacrylamide gels as Intact species for MS), a gel-based sample fractionation method, enables high-resolution proteome fractionation based on molecular weight by highly efficient extraction of proteins from polyacrylamide gels after SDS-PAGE separation. Thereafter it is essential to effectively remove contaminants such as CBB and SDS from the PEPPI fraction prior to mass spectrometry.
View Article and Find Full Text PDFCurr Protoc
January 2025
New England Biolabs, Ipswich, Massachusetts.
Functional genomic approaches have been effective at uncovering the function of uncharacterized genes and identifying new functions for known genes. Often these approaches rely on an in vivo screen or selection to associate genes with a phenotype of interest. These selections and screens are dependent upon the expression of proteins encoded in genomic DNA from an expression vector, such as a plasmid.
View Article and Find Full Text PDFAnal Methods
January 2025
School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
CYP2C19 gene single nucleotide polymorphisms (SNPs) should be considered in the clinical use of clopidogrel as they have important guiding value for predicting the risk of bleeding and thrombosis after clopidogrel treatment. The CRISPR/Cas system is increasingly used for SNP detection owing to its single-nucleotide mismatch specificity. Simultaneous detection of multiple SNPs for rapid identification of the CYP2C19 genotype is important, but there is no method to detect a wide variety of CYP2C19 SNPs.
View Article and Find Full Text PDFElife
January 2025
Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Specialized magnetic beads that bind target proteins to a cryogenic electron microscopy grid make it possible to study the structure of protein complexes from dilute samples.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Department of Bioengineering, Imperial College London; The Francis Crick Institute;
Mechanical forces continuously provide feedback to heart valve morphogenetic programs. In zebrafish, cardiac valve development relies on heart contraction and physical stimuli generated by the beating heart. Intracardiac hemodynamics, driven by blood flow, emerge as fundamental information shaping the development of the embryonic heart.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!