Inflammation is an important determinant of the severity and outcome of central nervous system injury. The endogenous anti-inflammatory cytokine interleukin-10 (IL-10) is upregulated in the injured adult central nervous system where it controls and terminates inflammatory processes. The developing brain, however, displays differences in susceptibility to insults and in associated inflammatory responses from the adult brain; the anatomic and temporal patterns of injury-induced IL-10 expression in the immature brain after excitotoxic injury are unknown. We analyzed the spaciotemporal gene and protein expression of IL-10 and its receptor (IL-10RI) in N-methyl-d-aspartate-induced excitotoxic injury in 9-day-old and control rats using quantitative reverse transcriptase polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemistry. In noninjected control brains, both molecules were expressed mainly in white matter on glial cells and blood vessels; IL-10 was also observed on blood vessels in gray matter and in glial fibrillary acidic protein-positive processes in the hippocampus and near leptomeningeal and ventricle surfaces. In N-methyl-d-aspartate-injected brains, IL-10 gene and protein expression were maximal at 72 hours postinjection; IL-10RI gene and protein expression peaked at 48 hours postinjection. Interleukin-10 and IL-10RI expression in injured areas was mainly found in reactive astrocytes and in microglia/macrophages. The expression patterns of IL-10 and IL-10R suggest possible developmental roles, and their upregulation after injury suggests that this expression may have anti-inflammatory effects in distinct anatomic sites in the immature brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/NEN.0b013e31819dca30 | DOI Listing |
Toxicon
January 2025
National Research Council of Italy, Institute of Biochemistry and Cell Biology, 00015, Monterotondo, RM, Italy. Electronic address:
Botulinum neurotoxin type A (BoNT/A) has expanded its therapeutic uses beyond neuromuscular disorders to include treatments for various pain syndromes and neurological conditions. Originally recognized for blocking acetylcholine release at neuromuscular junctions, BoNT/A's effects extend to both peripheral and central nervous systems. Its ability to undergo retrograde transport allows BoNT/A to modulate synaptic transmission and reduce pain centrally, influencing neurotransmitter systems beyond muscle control.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China. Electronic address:
Ethnopharmacological Relevance: Shilong Qingxue Granule (SQG), a traditional Chinese medicine, effectively treats the secondary neurological damage and functional deficits caused by cerebral hemorrhage, though its exact mechanism remains unclear.
Aim Of The Study: This study aimed to investigate the effects of SQG and its mechanisms.
Materials And Methods: we evaluated the effects of SQG and its extracts on glutamate induced nerve damage using in vivo and in vitro models.
Exp Neurol
January 2025
Department of Neurosurgery, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China; Wuxi Medical Center of Nanjing Medical University, Wuxi 214000, China. Electronic address:
Ischemic stroke, resulting from the blockage or narrowing of cerebral vessels, causes brain tissue damage due to ischemia and hypoxia. Although reperfusion therapy is essential to restore blood flow, it may also result in reperfusion injury, causing secondary damage through mechanisms like oxidative stress, inflammation, and excitotoxicity. These effects significantly impact astrocytes, neurons, and endothelial cells, aggravating brain injury and disrupting the blood-brain barrier.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
January 2025
Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia.
Acute stroke is the second leading cause of death and the third leading cause of disability in the world. Ischemic stroke (IS) the most common type of stroke. In acute cerebral ischemia, damage to the brain tissue is complex and includes blood-brain barrier (BBB) dysfunction, neuroinflammation, oxidative stress, activation of intracellular and extracellular signaling pathways, expression of neurotoxic agents, excitotoxicity, and apoptosis.
View Article and Find Full Text PDFClin Psychopharmacol Neurosci
February 2025
Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India.
Objective: Cerebral ischemia is a medical condition that occurs due to poor supply of blood in the brain. Reperfusion being savage further exaggerates the tissue injury causing cerebral ischemia/reperfusion injury (CI/R). CI/R is marked by an impairment in release of neurotransmitter, excitotoxicity, oxidative stress, inflammation, and neuronal apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!