AI Article Synopsis

  • Cholangiocarcinoma (CC) is a deadly bile duct cancer with poor survival rates, characterized by aggressive spread and a process called epithelial mesenchymal transition (EMT).
  • The study focused on understanding genetic changes and gene expression linked to the aggressive form of CC, using four established human cell lines (SCK, JCK1, Cho-CK, and Choi-CK) with varying differentiation levels.
  • Key findings included a deletion of the p53 tumor suppressor gene in the aggressive SCK cells and significant differences in the expression levels of 260 over-expressed and 247 under-expressed genes in comparison to well-differentiated cells, indicating a connection between these genetic changes and the aggressive behavior of

Article Abstract

Cholangiocarcinoma (CC) is an intrahepatic bile duct carcinoma with a high mortality rate and a poor prognosis. Sarcomatous change/epithelial mesenchymal transition (EMT) of CC frequently leads to aggressive intrahepatic spread and metastasis. The aim of this study was to identify the genetic alterations and gene expression pattern that might be associated with the sarcomatous change in CC. Previously, we established 4 human CC cell lines (SCK, JCK1, Cho-CK, and Choi-CK). In the present study, we characterized a typical sarcomatoid phenotype of SCK, and classified the other cell lines according to tumor cell differentiation (a poorly differentiated JCK, a moderately differentiated Cho-CK, and a well differentiated Choi-CK cells), both morphologically and immunocytologically. We further analyzed the genetic alterations of two tumor suppressor genes (p53 and FHIT) and the expression of Fas/FasL gene, well known CC-related receptor and its ligand, in these four CC cell lines. The deletion mutation of p53 was found in the sarcomatoid SCK cells. These cells expressed much less Fas/FasL mRNAs than did the other ordinary CC cells. We further characterize the gene expression pattern that is involved in the sarcomatous progression of CC, using cDNA microarrays that contained 18,688 genes. Comparison of the expression patterns between the sarcomatoid SCK cells and the differentiated Choi-CK cells enabled us to identify 260 genes and 247 genes that were significantly over-expressed and under-expressed, respectively. Northern blotting of the 14 randomly selected genes verified the microarray data, including the differential expressions of the LGALS1, TGFBI, CES1, LDHB, UCHL1, ASPH, VDAC1, VIL2, CCND2, S100P, CALB1, MAL2, GPX1, and ANXA8 mRNAs. Immunohistochemistry also revealed in part the differential expressions of these gene proteins. These results suggest that those genetic and gene expression alterations may be relevant to the sarcomatous change/EMT in CC cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2679331PMC
http://dx.doi.org/10.3858/emm.2009.41.2.013DOI Listing

Publication Analysis

Top Keywords

gene expression
12
cell lines
12
expression alterations
8
sarcomatous change
8
cells
8
genetic alterations
8
expression pattern
8
differentiated choi-ck
8
choi-ck cells
8
sarcomatoid sck
8

Similar Publications

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.

Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.

View Article and Find Full Text PDF

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!