Retroviral vectors containing internal promoters, chromatin insulators, and self-inactivating (SIN) long terminal repeats (LTRs) may have significantly reduced genotoxicity relative to the conventional retroviral vectors used in recent, otherwise successful clinical trials. Large-scale production of such vectors is problematic, however, as the introduction of SIN vectors into packaging cells cannot be accomplished with the traditional method of viral transduction. We have derived a set of packaging cell lines for HIV-based lentiviral vectors and developed a novel concatemeric array transfection technique for the introduction of SIN vector genomes devoid of enhancer and promoter sequences in the LTR. We used this method to derive a producer cell clone for a SIN lentiviral vector expressing green fluorescent protein, which when grown in a bioreactor generated more than 20 L of supernatant with titers above 10(7) transducing units (TU) per milliliter. Further refinement of our technique enabled the rapid generation of whole populations of stably transformed cells that produced similar titers. Finally, we describe the construction of an insulated, SIN lentiviral vector encoding the human interleukin 2 receptor common gamma chain (IL2RG) gene and the efficient derivation of cloned producer cells that generate supernatants with titers greater than 5 x 10(7) TU/mL and that are suitable for use in a clinical trial for X-linked severe combined immunodeficiency (SCID-X1).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2686181PMC
http://dx.doi.org/10.1182/blood-2008-11-191049DOI Listing

Publication Analysis

Top Keywords

sin lentiviral
12
lentiviral vector
12
producer cell
8
cell lines
8
concatemeric array
8
array transfection
8
retroviral vectors
8
introduction sin
8
sin
6
vectors
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!