The exponential feeding strategy (EFS) of dual substrates (i.e., phenol and glycerol) was applied to optimize the overall performance of phenol degradation by Cupriavidus taiwanensis R186. Addition of a second substrate (e.g., glycerol) could stimulate the phenol biodegradation efficiency of strain R186. Hence, a feasible EFS was developed for fed-batch phenol biodegradation using the dual-substrate biostimulation technique. The phenol degradation kinetics was well characterized with proposed model and response surface analysis. Our findings quantitatively revealed that glycerol could effectively enhance the phenol degradation performance, as the highest phenol degradation efficiency occurred with the supplementation of 0.8-1.2 g L(-1) of glycerol. The optimal dual-substrate EFS was identified via contour analysis and kinetic modeling. With the optimal dual-substrate EFS (i.e., a feeding rate constant (alpha(1) and alpha(2)) of 0.5 and 0.3, respectively), the shortest time (ca. 13.80 h) for phenol degradation was achieved with a specific growth rate of ca. 0.281 h(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2009.02.045DOI Listing

Publication Analysis

Top Keywords

phenol degradation
24
phenol
9
exponential feeding
8
feeding strategy
8
dual-substrate biostimulation
8
degradation cupriavidus
8
cupriavidus taiwanensis
8
phenol biodegradation
8
optimal dual-substrate
8
dual-substrate efs
8

Similar Publications

Interfacial solar vapor generation (ISVG) accompanied by photocatalytic degradation holds immense potential to mitigate water scarcity and pollution. Distinct from the two detached functional components (photothermal agent and photocatalyst) in a conventional evaporator, in this study, an all-in-one photothermal/catalytic agent, nitrogen-containing honeycomb carbon nanosheets (NHC), was engineered for synergistic high-efficiency steam generation and photocatalysis functions. It was demonstrated that the superoxide radical generated on the surface of NHC conferred its catalytic activity to the photodegradation of organic pollutants under full solar spectrum irradiation.

View Article and Find Full Text PDF

Metal-free photocatalysts derived from earth-abundant elements have drawn significant attention owing to their ample supply for potential large-scale applications. However, it is still challenging to achieve highly efficient photocatalytic performance owing to their sluggish charge separation and lack of active catalytic sites. Herein, we designed and constructed a series of covalently bonded organic semiconductors to enhance water splitting and phenol degradation.

View Article and Find Full Text PDF

Background: Basella alba L. (Malabar spinach) is a widely consumed leafy vegetable, well known for its nutritional and therapeutic properties. These properties arise from the availability of essential nutrients, phytochemicals, and antioxidant potential, which may vary depending on environmental factors induced by the geographical location.

View Article and Find Full Text PDF

Identifying the optimal cultivation regions and evaluating the impact of environmental factors are crucial for selecting the best conditions for the commercial production of important medicinal and industrial plants. This study examined the effects of different cultivation areas-Rayen, Eghlid, Kalat, and Zanjan-on the agro-morphological and phytochemical traits of Glycyrrhiza glabra. The findings revealed that the location where the plants were grown significantly influenced their physical and chemical characteristics.

View Article and Find Full Text PDF

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!