A review of recent insights into the role of the sarcoplasmic reticulum and Ca entry in uterine smooth muscle.

Eur J Obstet Gynecol Reprod Biol

Department of Physiology, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L693BX, UK.

Published: May 2009

AI Article Synopsis

Article Abstract

The uterine sacroplasmic reticulum (SR) takes up and stores calcium [Ca], using an ATPase (SERCA) and the Ca-buffering proteins, calsequestrin and calreticulin. This stored Ca can be released via IP(3)-gated Ca channels. Decreases in luminal Ca concentration [Ca] have been directly measured following agonist stimulation. During spontaneous contractions however, there appears to be no involvement of the SR, as Ca entry and efflux across the plasma membrane account for these phasic contractions. After over-viewing current knowledge concerning SR structure and function, we highlight three areas of research which suggest new ways of looking at the role of the SR in the uterus, although they may be controversial or speculative at the moment. Firstly, we review the evidence for the function, if any, of Ca-induced SR Ca release channels, the ryanodine receptor (RyR) and the lack of Ca sparks (the elemental release events from RyRs), in the uterus. Secondly, we ask does regulation of SERCA by the accessory protein, phospholamban, occur in the uterus and what is the effect of knocking out phospholamban on uterine activity? Thirdly, we address the question of when and how store-operated Ca entry occurs in the myometrium. By analogy with other, usually less excitable tissues, is there a mechanism that links store Ca depletion to plasma membrane Ca entry in smooth muscle cells within intact uterus and is it physiologically relevant and regulated? Are the recently described proteins ORAI and STIM-1 involved in uterine store-operated Ca entry? We end the review by integrating these new insights with previous data to present a new working model of the SR in the uterus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejogrb.2009.02.010DOI Listing

Publication Analysis

Top Keywords

smooth muscle
8
plasma membrane
8
uterus
5
review insights
4
insights role
4
role sarcoplasmic
4
sarcoplasmic reticulum
4
entry
4
reticulum entry
4
uterine
4

Similar Publications

Traumatic brain injury (TBI) often leads to impaired regulation of cerebral blood flow, which may be caused by pathological changes of the vascular smooth muscle cells (VSMCs) in the arterial wall. Moreover, these cerebrovascular changes may contribute to the development of various neurodegenerative disorders such as Alzheimer's-like pathologies that include amyloid beta aggregation. Despite its importance, the pathophysiological mechanisms responsible for VSMC dysfunction after TBI have rarely been evaluated.

View Article and Find Full Text PDF

Aim: The primary objective of this study is to investigate the impact of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its functional receptor, fibroblast growth factor-inducible 14 (Fn14), on the process of vascular smooth muscle cell (VSMC) senescence.

Methods: Rat arterial VSMCs were cultured with angiotensin II to establish a model of premature senescence. The effects of TWEAK and Fn14 on senescent VSMCs were evaluated.

View Article and Find Full Text PDF

In vitro stretch modulates mitochondrial dynamics and energy metabolism to induce smooth muscle differentiation in mesenchymal stem cells.

FASEB J

January 2025

Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing, China.

The smooth muscle cells (SMCs) located in the vascular media layer are continuously subjected to cyclic stretching perpendicular to the vessel wall and play a crucial role in vascular wall remodeling and blood pressure regulation. Mesenchymal stem cells (MSCs) are promising tools to differentiate into SMCs. Mechanical stretch loading offers an opportunity to guide the MSC-SMC differentiation and mechanical adaption for function regeneration of blood vessels.

View Article and Find Full Text PDF

Bacterial keratitis (BK) is a type of corneal inflammation resulting from bacterial infection in the eye. Although nanozymes have been explored as promising materials in corneal wound healing, currently available nanozymes lack sufficient catalytic activity and the ability to penetrate bacterial biofilms, limiting their efficacy against the treatment of BK. To remedy this, ZnFe layered double hydroxide (ZnFe-LDH) nanosheets are loaded with Cu single-atom nanozymes (Cu-SAzymes) and aminated dextran (Dex-NH), resulting in the formation of the nanozyme DT-ZnFe-LDH@Cu, which possesses peroxidase (POD)-, oxidase (OXD)-, and catalase (CAT)-like catalytic activities.

View Article and Find Full Text PDF

Objective: To study and correlate the clinicopathological findings of Solitary Rectal Ulcer Syndrome (SRUS) in 10 pediatric patients.

Material And Methods: This study is a retrospective study of patients from January 2017 to June 2024. The clinical records were reviewed for details of the clinical presentation, colonoscopic findings, associated local and systemic diseases, and other investigations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!