As a continuation of our efforts to discover and develop the apoptosis inducing 4-anilino-2-(2-pyridyl)pyrimidines as potential anticancer agents, we explored replacing the 2-pyridyl group by other aryl groups. SAR studies showed that the 2-pyridyl group can be replaced by a 3-pyridyl, 4-pyridyl and 2-pyrazinyl group, and that the SAR for the anilino group was similar to that of the 2-pyridyl series. However, replacement of the 2-pyridyl group by a phenyl group, a 3,5-dichloro-4-pyridyl group, or a saturated ring led to inactive compounds. Several potent compounds, including 2f, 3d, 3j and 4a, with EC(50) values of 0.048-0.024 microM in the apoptosis induction assay against T47D cells, were identified through the SAR studies. In a tubulin polymerization assay, compound 2f, which was active against all the three cell lines tested (T47D, HTC116 and SNU398), inhibited tubulin polymerization with an IC(50) value of 0.5 microM, while compound 2a, which was active against T47D cells but not active against HTC116 and SNU398 cells, was not active in the tubulin assay at up to 50 microM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2009.02.074DOI Listing

Publication Analysis

Top Keywords

2-pyridyl group
12
group
8
sar studies
8
t47d cells
8
tubulin polymerization
8
compound active
8
htc116 snu398
8
cells active
8
discovery substituted
4
substituted 4-anilino-2-arylpyrimidines
4

Similar Publications

The advancement of tin-based perovskite solar cells (TPSCs) has been severely hindered by the poor controllability of perovskite crystal growth and the energy level mismatch between the perovskite and fullerene-based electron transport layer (ETL). Here, we synthesized three cis-configured pyridyl-substituted fulleropyrrolidines (PPF), specifically 2-pyridyl (PPF2), 3-pyridyl (PPF3), and 4-pyridyl (PPF4), and utilized them as precursor additives to regulate the crystallization kinetics during film formation. The spatial distance between the two pyridine groups in PPF2, PPF3, and PPF4 increases sequentially, enabling PPF4 to interact with more perovskite colloidal particles.

View Article and Find Full Text PDF

Aerobic oxidation of a dimethylplatinum(II) complex featuring 1,1-di(2-pyridyl)ethanol as a supporting ligand leads to the formation of two unexpected Pt complexes (in ∼1:1 ratio), neither of which results from direct oxidation typical for Pt centers supported by popular κ-(,) ligands. While one product features an isomerized Pt center stabilized by the κ-(,,) ligand coordination mode, surprisingly, the other product results from intramolecular activation of the ligand methyl fragment. Mechanistic studies, reactivity of model complexes, and DFT calculations reveal that the critical proton-responsive nature of the ligand allows formation of intermediates that result in a concerted metalation deprotonation (CMD)-like C-H activation at Pt.

View Article and Find Full Text PDF

Iridium(III) Complexes of Bifunctional 2-(2-Pyridyl)imidazole Ligands: Electrochemiluminescent Emitters in Aqueous Media.

Inorg Chem

December 2024

The Biomedical and Environmental Sensor Technology (BEST) Research Centre, Biosensors Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia.

A series of electrochemiluminescent (ECL) iridium(III) complexes with the general formula [Ir(CN)(pim)] (where CN = cyclometalating ligands 2-phenylpyridinato (ppy) or 2-(2,4-difluorophenyl)pyridinato (dFppy), and pim = 2-(2-pyridyl)imidazole) have been synthesized. In each case, the 2-(2-pyridyl)imidazole ancillary ligand has been modified to facilitate bioconjugation and ECL label development. All complexes exhibit blue-shifted optical and electro-generated phosphorescence relative to the archetypal complex [Ir(ppy)(bpy)] (bpy = 2,2'-bipyridine).

View Article and Find Full Text PDF

The chemosensor properties of a bimetallic terbium(III)/copper(II) complex functionalized with a 4-(2-pyridyl)-1,2,3-triazole ligand for the detection of Cu ions and, aqueous and gaseous hydrogen sulfide was investigated. The 4-(2-pyridyl)-1,2,3-triazole ligand functions both as an antenna chromophore and a receptor for Cu ions; the Cu complex was shown to be a chemosensor for the detection of aqueous hydrogen sulfide. The chemosensor exhibited significant reversibility over multiple cycles, observed with the sequential addition of NaS followed by Cu ions.

View Article and Find Full Text PDF

Unusual and Persistent Free Radical Intermediate Production from 2-Pyridyl Ketones via UV Irradiation: A Direct ESR Study.

J Phys Chem Lett

November 2024

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, P. R. China.

Aryl ketones are often used as photosensitizers and photoinitiators. Free radical intermediates have been suggested, but not confirmed, to be generated after photoirradiation. Here we found, unexpectedly, that a persistent radical was produced from di-2-pyridyl ketone after UV irradiation, which was detected by the direct ESR method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!