A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differentiation of bone marrow-derived mesenchymal stem cells into multi-layered epidermis-like cells in 3D organotypic coculture. | LitMetric

The interactions of bone marrow-derived mesenchymal stem cells (MSCs) and their engrafted microenvironment are an integral part of signaling control of stem cell lineage commitment. We attempted to induce bone marrow-derived MSCs to undergo epidermal lineage differentiation by manipulating the biochemical, environmental and physical properties of culture conditions in an organotypic coculture model to simulate a skin-specific microenvironment. The induction medium was optimized by varying different biomolecular supplements in a basic stratification medium. A multi-layered epidermis-like structure was established when MSCs were cultured in an optimized induction medium on a contractible fibroblast-embedded collagen gel with an air-liquid interface. The commitment into epidermal lineage was further confirmed by the expression of early and intermediate epidermalization markers - keratin 10 and filaggrin in 90.67% and 80.51% of MSCs, respectively. This study not only highlights the possibility of in vitro control of MSCs into epidermal lineage, but also suggests the therapeutic potential of bone marrow-derived MSCs for skin regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2009.02.025DOI Listing

Publication Analysis

Top Keywords

bone marrow-derived
16
epidermal lineage
12
marrow-derived mesenchymal
8
mesenchymal stem
8
stem cells
8
multi-layered epidermis-like
8
organotypic coculture
8
marrow-derived mscs
8
induction medium
8
mscs
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!