The role of the endocannabinoid system in the regulation of energy expenditure.

Best Pract Res Clin Endocrinol Metab

Discipline of Medicine, School of Medicine, Level 6 Eleanor Harrald Building, Royal Adelaide Hospital, University of Adelaide, Adelaide, South Australia 5000, Australia.

Published: February 2009

Endocannabinoids, a lipid-derived signaling system, regulate appetite and motivation to eat via effects in the hypothalamus and nucleus accumbens. Not all the effects of endocannabinoids on fat mass can be explained by the regulation of food intake alone. Endocannabinoids and their receptors are located in areas of the central nervous system and multiple peripheral tissues involved in the regulation of intermediary metabolism and energy expenditure. In addition to regulating food intake by both central and peripherally mediated effects, endocannabinoids modify glucose and lipid metabolism so as to promote energy storage via lipogenesis and reduce energy expenditure. The endocannabinoid system appears to be overactive in obesity and may serve to maintain fat mass and underlies some of the metabolic consequences of obesity. Inhibition of the cannabinoid type-1 receptor ameliorates the effects of endocannabinoids on food intake and energy metabolism; lipogenesis is inhibited, lipolysis, fatty acid oxidation and glucose uptake increase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.beem.2008.10.005DOI Listing

Publication Analysis

Top Keywords

energy expenditure
12
effects endocannabinoids
12
food intake
12
endocannabinoid system
8
fat mass
8
energy
5
endocannabinoids
5
role endocannabinoid
4
system
4
system regulation
4

Similar Publications

Waterlogging is a significant stressor for crops, particularly in lowland regions where soil conditions exacerbate the problem. Waterlogged roots experience hypoxia, disrupting oxidative phosphorylation and triggering metabolic reorganization to sustain energy production. Here, we investigated the metabolic aspects that differentiate two soybean sister lines contrasting for waterlogging tolerance.

View Article and Find Full Text PDF

Neurodegenerative diseases (NDs) are caused by progressive neuronal death and cognitive decline. Epigallocatechin 3-gallate (EGCG) is a polyphenolic molecule in green tea as a neuroprotective agent. This review evaluates the therapeutic effects of EGCG and explores the molecular mechanisms that show its neuroprotective properties.

View Article and Find Full Text PDF

Wall shear stress modulates metabolic pathways in endothelial cells.

Metabolomics

January 2025

Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.

Introduction: Hemodynamic forces play a crucial role in modulating endothelial cell (EC) behavior, significantly influencing blood vessel responses. While traditional in vitro studies often explore ECs under static conditions, ECs are exposed to various hemodynamic forces in vivo. This study investigates how wall shear stress (WSS) influences EC metabolism, focusing on the interplay between WSS and key metabolic pathways.

View Article and Find Full Text PDF

Bioplastics, particularly polyhydroxyalkanoates (PHAs), are emerging as promising alternatives to traditional materials due to their biodegradability. This study focuses on the production of PHAs as bioplastics using effluent from hydrogen production in a two-stage Biohythane Pilot Plant, which provides a low-cost substrate. The aim is to optimize production conditions, with Cupriavidus necator TISTR 1335 being used as the PHA producer.

View Article and Find Full Text PDF

New approaches to secondary metabolite discovery from anaerobic gut microbes.

Appl Microbiol Biotechnol

January 2025

Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.

The animal gut microbiome is a complex system of diverse, predominantly anaerobic microbiota with secondary metabolite potential. These metabolites likely play roles in shaping microbial community membership and influencing animal host health. As such, novel secondary metabolites from gut microbes hold significant biotechnological and therapeutic interest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!