Gamma-glutamyltransferase (GGT, E.C. 2.3.2.2) catalyzes the hydrolysis and transpeptidation of extracellular glutathione. Due to its central role in maintaining mammalian glutathione homeostasis, GGT is now believed to be a valuable drug target for a variety of life-threatening diseases, such as cancer. Unfortunately, however, effective tools for screening GGT inhibitors are still lacking. We report here the synthesis and evaluation of an alpha-phenylthio-containing glutathione peptide mimic that eliminates thiophenol upon GGT-catalyzed hydrolysis of the gamma-glutamyl peptide bond. The concurrent, real-time spectrophotometric quantification of the released thiophenol using Ellman's reagent creates a GGT assay format that is simple, robust, and highly sensitive. The versatility of the assay has been demonstrated by its application to the kinetic characterization of equine kidney GGT, and enzyme inhibition assays. The ability of the glutathione mimic to behave as an excellent donor substrate (exhibiting Michaelis-Menten kinetics with a K(m) of 11.3+/-0.5 microM and a k(cat) of 90.1+/-0.8 nmol mg(-1)min(-1)), coupled to the assay's ability to study the hydrolysis-only mode of the GGT-catalyzed reaction, make our approach amenable to high-throughput drug screening platforms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2009.01.129 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!